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Preface

The first two editions of the HiPEAC conference series in Barcelona (2005) and
Ghent (2007) have really demonstrated that the topics covered by HiPEAC
attract a lot of interest. In the 2007 conference, about 200 people attended the
conference and its satellite events. The third HiPEAC conference was held in
Göteborg, the second largest city in Sweden.

The offerings of this conference were rich and diverse. We offered attendees
a set of four workshops on topics that are all central to the HiPEAC roadmap:
multi-cores, compiler optimizations, reconfigurable computing, and interconnec-
tion networks. Additionally, a tutorial on the Sunflower Toolsuite was offered.

The conference program was as rich as in the last years. It featured many
important and timely topics such as multi-core processors, reconfigurable sys-
tems, compiler optimization, power-aware techniques and more. The conference
also offered a keynote speech by Mateo Valero – the Eckert-Mauchly Award
winner in 2007. Several social events provided opportunities for interaction and
exchange of ideas in informal settings such as a tour at the Universeum – a
science exhibition center and aquarium – where the banquet took place as well.

This year we received 77 submissions of which 14 papers were Committee pa-
pers. Papers were submitted from 22 different nations (about 40% from Europe,
25% from Asia, 30% from North America and 5% from South America), which
is a token of the global visibility of the conference.

We had the luxury of having a strong Program Committee consisting of 37
experts in all areas within the scope of the conference and we kept all reviewing
within the Program Committee. Thus, each paper was typically reviewed by four
Program Committee members. We collected 301 reviews and we were happy to
note that each paper was rigorously reviewed before we made the decisions,
despite the fact that we shortened the review phase and that reviewing took
place during most reviewers’ precious vacation time.

The Program Committee meeting was held in the center of Rome, the ancient
capital of Italy. Despite a long trip for many members of the Program Committee,
16 PC members attended the meeting. For virtually all papers, at least two
reviewers were present. The PC meeting was preceded by an e-mail discussion
of papers among the reviewers. At the PC meeting the papers were discussed in
the order of average score also including PC papers. When a paper was discussed
where a participating PC member was either a co-author or had conflicts with
that paper, that person left the room. We accepted 25 papers of which 4 are PC
papers, yielding an acceptance rate of 32%.

The end result of the whole effort was the high-quality program for the
HiPEAC 2008 event. We hope that you learn and get much inspiration from
this proceedings volume.



VI Preface

The planning of a conference starts way ahead of the actual event. If it were
not for the unselfish and hard work of a large number of devoted individuals,
this conference would not have been as successful as it was. Let us first thank
the authors for their great contributions which constitute the core of the con-
ference. We were very fortunate to collect a great team to power this event
and would like to thank all of them: Mats Brorsson (KTH) for putting together
an attractive pre-conference program; Ewa Wäingelin (Chalmers) for the enor-
mous effort she invested in the local arrangement; Per Waborg (Chalmers) for
a fantastic job in keeping the costs within budget and running the books; Mike
O’Boyle (Edinburgh) for timely publicity campaigns; Jörg Mische and Theo Un-
gerer (Augsburg) for the hard work in putting together the proceedings; Michiel
Ronsee (Ghent) for administering the submission and review system; and finally
Sylvie Detournay (Ghent) for administering the web. Thanks to all of you!

Finally, we would also like to mention the support from the Sixth Framework
Programme of the European Union, represented by project officers Mercè Griera
i Fisa and Panagiotis Tsarchopoulos, for sponsoring the event and for the travel
grants.

October 2007 Per Stenström
Michel Dubois

Manolis Katevenis
Rajiv Gupta
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Supercomputing for the Future, Supercomputing
from the Past (Keynote)

Mateo Valero and Jesús Labarta

Barcelona Supercomputing Center and
Universitat Politcnica de Catalunya, Barcelona

Abstract. Supercomputing is a zero billion dollar market but a huge
driving boost for technology and systems for the future.

Today, applications in the engineering and scientific world are the
major users of the huge computational power offered by supercomputers.
In the future, the commercial and business applications will increasingly
have such high computational demands.

Supercomputers, once built on technology developed from scratch
have now evolved towards the integration of commodity components.
Designers of high end systems for the future have to closely monitor the
evolution of mass market developments. Such trends also imply that su-
percomputers themselves provide requirements for the performance and
design of those components.

The current technology integration capability is actually allowing for
the use of supercomputing technologies within a single chip that will
be used in all markets. Stressing the high end systems design will thus
help develop ideas and techniques that will spread everywhere. A general
observation about supercomputers in the past is their relatively static
operation (job allocation, interconnect routing, domain decompositions,
loop scheduling) and often little coordination between levels.

Flexibility and dynamicity are some key ideas that will have to be
further stressed in the design of future supercomputers. The ability to
accept and deal with variance (rather than stubbornly trying to elim-
inate it) will be important. Such variance may arise from the actual
manufacturing/operation mode of the different components (chip lay-
out, MPI internals, contention for shared resources such as memory or
interconnect, ...) or the expectedly more and more dynamic nature of
the applications themselves. Such variability will be perceived as load
imbalance by an actual run. Properly addressing this issue will be very
important.

The application behavior typically shows repetitive patterns of re-
source usage. Even if such patterns may be dynamic, very often the
timescales of such variability allows for the application of prediction tech-
niques and matching resources to actual demands. Our foreseen systems
will thus have dynamic mechanisms to support fine grain load balancing,
while the policies will be applied at a coarse granularity.

As we approach fundamental limits in single processor design specially
in terms of the performance/power ratio, multicore chips and massive
parallelism will become necessary to achieve the required performance
levels. A hierarchical structure is one of the unavoidable approaches to

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 3–5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



4 M. Valero and J. Labarta

future systems design. Hierarchies will show up at all levels from proces-
sor to node and system design, both in the hardware and in the software.

The development of programming models (extending current ones or
developing new ones) faces a challenge of providing the mechanism to
express a certain level of hierarchy (but not too much/detailed) that
can be matched by compilers, run times and OSs to the potentially very
different underlying architectures. Programmability and portability of
the programs (both functional and performance wise, both forward and
backwards) is a key challenge for these systems.

The approach to address a massively parallel and hierarchical system
with load balancing issues will require coordination between different
scheduling/resource allocation policies and a tight integration of the de-
sign of the components at all levels: processor, interconnect, run time,
programming model, applications, OS scheduler, storage and Job sched-
uler.

By approaching the way of operation between supercomputers and
general purpose, this zero billion dollar market can play a very important
role of future unified-computing.

Biography of Mateo Valero

Mateo Valero obtained his PhD at UPC in 1980. He is a professor in the
Computer Architecture Department at UPC. His research interests focus
on high performance architectures. He has published approximately 400
papers on these topics. He is the director of the Barcelona Supercomput-
ing Center, the National Center of Supercomputing in Spain. Dr. Valero
has been honored with several awards. Among them, the Eckert-Mauchly
Award in 2007, by the IEEE, Institute of Electrical and Electronics Engi-
neers and the ACM, the Association for Computing Machinery, the King
Jaime I in research by the Generalitat Valenciana in 1997 presented by
the Queen of Spain, and two Spanish National awards, the Julio Rey Pas-
tor in 2001, to recognize research on IT technologies, and the Leonardo
Torres Quevedo in 2006, to recognize research in Engineering, by the
Spanish Ministery of Science and Technology, presented by the King of
Spain.

In December 1994, Professor Valero became a founding member of
the Royal Spanish Academy of Engineering. In 2005 he was elected Cor-
respondant Academic of the Spanish Royal Academy of Science and in
2006, member of the Royal Spanish Academy of Doctors. In 2000 he be-
came a Fellow of the IEEE. In 2002, he became an Intel Distinguished
Research Fellow and a Fellow of the ACM, the Association for Comput-
ing Machinery. In 1998 he won a Favourite Son Award of his home town,
Alfamn (Zaragoza) and in 2006, his native town of Alfamn named their
Public College after him.

Biography of Jess Labarta

Jess Labarta is full professor on Computer Architecture at the Technical
University of Catalonia (UPC) since 1990. Since 1981 he has been lec-
turing on computer architecture, operating systems, computer networks
and performance evaluation. His research interest has been centered on
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parallel computing, covering areas from multiprocessor architecture,
memory hierarchy, parallelizing compilers, operating systems, paralleliza-
tion of numerical kernels, performance analysis and prediction tools.

Since 1995 till 2004 he was director of CEPBA (European Center of
Parallelism of Barcelona) where he has been highly motivated by the
promotion of parallel computing into industrial practice, and especially
within SMEs. Since 2000 he has been strongly committed in carrying
out and promoting productive research cooperation with IBM as part of
the CEPBA-IBM Research Institute. Since 2005 he is responsible of the
parallel computing research team within the Barcelona Supercomputing
Center (BSC).

His major directions of current work relate to performance analysis
tools, programming models (OpenMP for SMPs and clusters, CellSuper-
scalar for the Cell processor and Grid Superscalar for distributed envi-
ronments) and resource management. His team distributes the CEPBA
tools (Paraver and Dimemas).
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MIPS MT: A Multithreaded RISC Architecture 
for Embedded Real-Time Processing

Kevin D. Kissell

MIPS Technologies Inc.
39 chemin des Martelles, 06620 Le Bar sur Loup, France

Tel.: +33 4.93.42.45.15; Fax: +33 4.93.42.45.13.
kevink@acm.org

http://www.mips.com/

Abstract. The MIPS® MT architecture is a fine-grained multithreading exten-
sion to the general-purpose MIPS RISC architecture. In addition to the classical
multithreaded provision for explicit exploitation of cuncurrency as a mechanism
for latency tolerance, MIPS MT has unique features to address the problems of
real-time and embedded computing in System-on-a-Chip environments. This pa-
per provides an overview of the MIPS MT architecture and how it can variously
be exploited to improve computational bandwidth, real time quality of service,
and response time to asynchronous events.

1 Multithreading and Embedded Processors

Most of the work that has been done in multithreaded processor architecture over the
years [1] has been motivated by the demands of high-performance on computational
workloads. However, from the very beginning, starting with the multithreaded periph-
eral processor of the CDC 6600 [2], multithreading has been recognized as a valuable
architectural tool for real-time and embedded processing. In recent years, specialized
multithreaded processor architectures for network data-plane processing have been pro-
posed and deployed with some success [3][4], but their adoption has been limited be-
cause of the non-standard instruction sets, software tools, and environments.
In late 2002, the author’s group at MIPS Technologies Inc. began the investigation of
the extension of the standard MIPS32® RISC architecture to encompass explicit mul-
tithreading as a superset extension. The resulting multithreading architecture, MIPS
MT, has been instantiated in a synthesizable processor, the MIPS32 34K™ core, which
has served as a platform for verification and research.

The development of the MIPS MT architecture was constrained by a set of philo-
sophical principles: 

1. Scalability. The architecture must be implementable and useful on processor im-
plementations spanning orders of magnitude in size and complexity, from micro-
controllers to numerical supercomputer nodes.

2. Run-time Efficiency. Basic operations of thread creation and destruction, and of
inter-thread communication and synchronization, must be realizable in a minimal
number of clock cycles, and without OS intervention in the most probable cases.
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3. Virtualizability. The physical resources which support multithreading must be
invisible or abstracted to user-mode software, such that an application which con-
sumes more resources than are physically implemented on a given MIPS MT plat-
form can nevertheless execute correctly, given appropriate OS support.

4. Migratability. The architecture must allow threads to migrate from processor to
processor to balance load, and be amenable to multithreaded/multi-core imple-
mentations.

5. Scheduling Agnosticism. The architecture must allow for a broad variety of thread
scheduling models, while isolating these models from user-mode software.

2 The Hierarchy of Multithreaded Entities

MIPS MT defines two levels of multithreading, the VPE (Virtual Processing Element),
which is a virtual processor implementing the full MIPS instruction set and privileged
resource architecture, and the TC (for Thread Context), which is a lighter-weight “mi-
crothread” entity. This was largely dictated by the fact that the MIPS privileged re-
source architecture provides direct software access to a TLB and other resources that
are relatively expensive to instantiate in a small design. However, it also provides a rich
framework for dynamic multithreading under software control. A VPE can have a var-
iable number of TCs bound to it, sharing its privileged resources.

2.1 VPEs as Exception Domains

A MIPS MT VPE can be thought of as an exception domain. A single MMU and a sin-
gle set of system coprocessor registers for exception management exists per VPE,
shared by as many TC microthreads as may be bound to the VPE. There is, for example,
a single exception program counter register to indicate where execution should be re-
sumed at the end of exception service. It thus becomes essential that, when an exception
is dispatched, thread scheduling within the VPE be suspended until software can sam-
ple the relevant privileged resource state and acknowledge the exception. In the base
MIPS architecture, the exception entry state is already indicated by a privileged
resource architecture state bit (EXL), which is cleared automatically on a return from
exception. In MIPS MT, that bit is instantiated per-VPE, and acts as an inhibitor of mul-
tithreaded issue.

Synchronous exceptions, such as TLB and floating-point exceptions, are serviced by
the microthread which caused them. Asynchronous interrupt exceptions, however, are
asserted at the VPE level and serviced opportunistically by any available TC bound to
the VPE. A TC can be excluded from the interrupt service pool of its associated VPE
by setting a per-TC “interrupt exemption” bit. While only one interrupt exception may
be dispatched at a time in a VPE, once the critical state has been captured by the excep-
tion vector, interrupts can be re-enabled, allowing multiple interrupt service routines to
execute concurrently within a VPE.
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2.2 VPEs as Scheduling Domains

Privileged software can atomically enable and disable multithreaded execution within
a VPE without directly affecting other VPEs of the same processor core. The MIPS MT
architecture is scheduling-agnostic, but defines a software interface to the implementa-
tion-specific hardware thread scheduling logic. This interface is implemented hierarchi-
cally, at both the level of the VPE and the level of the TC. This is discussed further in
section 5.

3 Thread Creation and Destruction

One of the design objectives of MIPS MT was to allow for lightweight creation and de-
struction of concurrent threads of execution, since the overhead of thread creation and
destruction can create a lower bound on the granularity of parallelism that can be ex-
ploited. In MIPS MT, a microthread can be created and assigned to a TC using the
FORK instruction, and conditionally terminated using the YIELD instruction.

3.1 Thread Creation with FORK

The MIPS MT FORK instruction causes a new microthread to begin execution, provided
that the hardware resources are available to do so. While other architectures have pro-
posed fork instructions with semantics similar to that of the traditional UNIX fork() sys-
tem call, where the operation replicates the full software-visible state of the thread con-
text [5], the MIPS MT FORK instruction follows the basic rules of the MIPS RISC in-
struction set: It requires no more than 2 general-purpose register reads and 1 GPR write,
so that it can be fully pipelined in a straightforward design. A starting instruction fetch
address and an arbitrary register value are read from the FORKing thread’s registers, and
the arbitrary value is written to the specified register of the FORKed TC. If more than a
single register value needs to be transmitted to the new microthread, the necessary val-
ues are passed via memory - in most cases the primary data cache. 

Unlike dynamic thread creation in the Tera MTA[6][7], which is a two-phase process
involving RESERVE and CREATE operations to allocate and, if the allocation was suc-
cessful, launch a new thread, the MIPS MT FORK is “optimistic”. Either a dynamically
allocatable TC is free to be FORKed, and the operation succeeds, or the FORK instruc-
tion throws a thread overflow exception to be caught by the operating system. The OS
can then determine whether to swap out some TCs state and make it available to the re-
started FORK, to emulate the operation by creating a new OS-level thread to time-share
in the system, or to signal an error. FORK is thus “virtualizable”.

It is worth noting that a successful FORK provides no “handle” to the FORKing thread
by which it might reference the thread it created. In part, this is due to the GPR write
port rule alluded to above, but there is also a philosophical argument. While it would be
trivial to provide an ephemerally valid value, such as the index into the physical array
of TCs, the software thread created might be interrupted, swapped out, or migrated at
any time. A persistent hardware handle that would follow a software thread for its entire
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lifetime would be of some utility, but the complexity associated with creating and main-
taining such a handle does not seem to be warranted in an architecture that needs to
scale down to microcontroller-class implementations.

3.2 Thread Termination with YIELD

The YIELD instruction serves several purposes in MIPS MT. Some of these will be de-
scribed below in section 5, but one important one is that of terminating a dynamically
allocated thread. If the input argument to YIELD is zero, the TC associated with the in-
struction stream changes state from being active to being “free”, and available for use
by a subsequent FORK.

If the last active TC within a VPE executes a YIELD $0 instruction, so that all ex-
ecution would stop on the VPE, a thread underflow condition exists, and an exception
is taken. It is up to the operating system to determine the correct action to take. 

4 Inter-thread Synchronization

The efficiency of inter-thread synchronization is another key factor that limits the gran-
ularity of concurrency that can be exploited by a multithreaded architecture. The stand-
ard synchronization mechanism in the MIPS architecture is the load-linked/store-con-
ditional operator pair. This mechanism must work on MIPS MT processors, for com-
patibility, but spin-lock semantics are highly undesirable on a multithreaded processor.
The act of spinning and retrying a lock consumes issue and memory bandwidth that
would better be used by the thread holding it, to make progress towards its release.

While the power and generality of extending memory load/store semantics with the
notion of empty/full synchronization has been demonstrated in systems like the Denel-
cor HEP[8], the Tera MTA and the Alewife machine[9], the simplicity of the concept
belies the costs of implementation. Designers of cost-sensitive embedded systems-on-
chips are not willing to pay the price to provide a main memory with empty/full at-
tributes.

Rather than require empty/full support for all of memory, the MIPS MT architecture
defines the notion of gating storage, which is some subset of the physical address space
which has the property that loads and stores to it can block for unbounded periods of
time, and can be aborted and restarted without any side-effects. A specific variety of
gating storage defined by MIPS MT is the “ITC” (Inter-thread Communication) store. 
The ITC store is broken up into cells, each of which has a set of views, which are dis-
tinguished by low-order address bits. To software, an ITC cell looks like a data structure
in memory, but instead of having distinct and independent data in each element of the
data structure, loads and stores to different elements of a cell operate on the same data,
but with different semantics. A C language description might be:

typedef volatile long long viewtype;
typedef struct {

viewtype bypass;  /* Non-blocking read/write */
viewtype control; /* Exposes Empty/Full state, etc. */
viewtype ef_sync; /* Empty/Full blocking load/store */
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viewtype ef_try;  /* Empty/Full non-blocking poll */
viewtype pv_sync; /* PV Semaphore blocking load/store */
viewtype pv_try;  /* PV Semaphore non-blocking poll */
viewtype reserved[10]; /* Reserved for future views */

} itc_cell;

 For example, the ef_sync cell view provides classical blocking empty/full semantics,
such that if itc_ptr is a pointer to an itc_cell in an “empty” state, then

x = itc_ptr->ef_sync;

will cause the executing thread to be suspended until such time as some other instruc-
tion stream performs an operation like

itc_ptr->ef_sync = y;

at which point the first thread’s x variable will pick up the value of y, and it will resume
execution.

The pv_sync view provides a more complex primitive, that of a counting, or PV sem-
aphore[10]. Stores which reference this view cause the value of the cell to be atomically
incremented, regardless of the register value stored, while loads return the value and
perform a post-decrement if it is non-zero. If the pre-load value is zero, the load blocks
until a pv_sync store is done.

The “try” views allow for non-blocking synchronization, using either the empty/full
or the P/V paradigm. In the pv_try case, loads return the cell data value, even if zero,
performing an auto-decrement only if the pre-load value was non-zero. In the ef_try
case, loads references return zero if the cell is empty, regardless of the last data value
written, and stores may be attempted using the MIPS32 SC (store conditional) instruc-
tion, which will indicate failure if the cell is full. Whereas the ef_sync view allows ar-
bitrary data to be passed through the cell, the use of a zero value to indicate the failure
of a load from an ef_try view implies that a word value of zero cannot be passed. In the
most frequent use case, however, it is pointers that are passed between threads via the
ITC cell, and a null pointers and non-pointers from an empty cell can be treated alike.

5 Hybrid Scheduling Control

Most of the study and application of multithreaded processor architecture has focused
on multithreading as a latency tolerance technique, a means of keeping fast functional
units busy in the face of long operand delays. This is of value in computationally inten-
sive embedded applications, but in many cases, it is the ability to provide latency avoid-
ance, rather than latency tolerance, where mulithreading provides an advantage in such
systems[11]. MIPS MT provides architectural support for this in several ways, allowing
processor hardware, system and application software, and external logic to jointly con-
trol the scheduling of instruction streams.

5.1 Zero-Latency Event Service Using YIELD Instructions

The use of the YIELD instruction for thread termination was described in section 3.2
above, but the YIELD instruction is in fact a general tool for controlling the execution
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of a thread. A processor implementing MIPS MT has up to 31 yield qualifier inputs, to
be connected to indicators of events external to the core. When a YIELD instruction is
issued with a positive input operand value, that value is interpreted as a vector of or-
thogonal bits corresponding to the yield qualifier inputs. If none of the qualifier inputs
corresponding to the operand value are asserted, execution of the thread is suspended
until such time as one of them goes active.

The ability to suspend execution based on a particular yield qualifier can be controlled
by the operating system, using a privileged mask register. If a program issues a YIELD
where the input value has a set bit that is not set in the mask register, an exception is de-
livered on the YIELD. This allows operating systems to prevent unauthorized programs
using input state as a covert channel, and allows virtualization, whereby a program exe-
cuting on a VPE to which a particular yield qualifier input is not connected can have the
YIELD operation emulated by the OS, in response to the illegal qualifier exception.

Event service gated by YIELD instructions has potentially less latency than inter-
rupts, even those handled by dedicated interrupt threads or shadow register files, be-
cause in addition to eliminating the need to save and restore context, there is no control
transfer to a vector, which would typically require a pipeline flush, and no decode of
state to determine where to resume event processing. In the case of the 34K-family
cores, which have a per-TC instruction buffer (IB), the instruction following the YIELD
is generally already in the IB, ready to issue once the YIELD ceases to be blocked.

5.2 Hierarchically Programmable Scheduling

In MIPS MT, each VPE and each TC has two registers of privileged resource state as-
sociated with its scheduling; a control register and a feedback register. The scheduling
control registers allow software to express dynamic information, such as priority or a
TDMA schedule, to a hardware scheduling policy manager, while the scheduling feed-
back registers allow the scheduling hardware to provide feedback, such as the number
of instructions issued or retired by the VPE or TC.

The 34K processor core design features a modular scheduling policy manager that
can be replaced or modified to suit the quality-of-service requirements of a particular
application.

5.3 Gating Storage as a Peripheral Interface

In addition to its primary function of providing inter-thread synchronization for software,
I/O FIFOs can be mapped into the gating storage space, so that threads can be pro-
grammed to consume or produce data in an open loop. Their execution will then be gov-
erned by the ability of the peripherals connected to the FIFOs to consume or produce data.

6 Virtualization of MIPS MT Resources

In order to better support the portability of applications across different MIPS MT im-
plementations, the new user-visible resources defined by the architecture: FORKed
threads, ITC cells, and YIELD qualifiers, are all virtualizable.
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6.1 Thread Context Virtualization

User-mode code has no knowledge of which physical TC it is using, nor which physical
TC is allocated by a successful FORK instruction. All interaction between concurrently
executing threads is done via shared memory or memory-like storage, and there is no
architectural assumption made about whether it is the “parent” or “child” which exe-
cutes first after a FORK.

When a FORK instruction is issued, it is transparent to the application whether a TC
was allocated and launched, or whether a thread overflow exception was taken instead.
In response to the thread overflow exception, an operating system has the option of
treating it as a fatal application error, treating it as an exception to be raised to the ap-
plication, or emulating the operation.

Emulation of a FORK implies hybrid scheduling, wherein the multithreaded proces-
sor schedules among the threads resident in N TCs, while system software multiplexes
M>N software threads across those N TCs. The MIPS MT architecture facilitates this
with MFTR (Move From Thread Register) and MTTR (Move To Thread Register) in-
structions, which allow a privileged thread running on one TC to halt another TC and
manipulate its contents, and with the per-TC scheduling feedback registers that allow
the forward progress of each thread to be monitored.

TCs which are blocked on ITC references or YIELD instructions may be halted and
swapped-out without any side-effect on the software-visible state of the thread or of the
ITC storage.

6.2 ITC Storage Virtualization

ITC storage is a special case of physical memory, and can be mapped and protected by
the MIPS32 MMU. Unlike physical memory, ITC storage cannot be swapped in or out
with direct I/O operations. System software must extract and restore both the cell data
and the cell control state, via the bypass and control views, respectively.

6.3 YIELD Qualifier Virtualization

The MIPS MT architecture exposes a new set of physical inputs, the YIELD qua-
lifiers, to user-mode software. To allow for trap and emulation of qualified YIELD
operations, each VPE has a privileged mask register to selectively enable the YIELD
qualifiers. If an application’s YIELD instruction attempts to wait on an input that has not
been  enabled in the associated mask, an exception is taken. The operating system can
then implement an appropriate policy of termination, raising of a software exception, or
emulation of the YIELD with a software suspension of the thread.

7 Software Use Models

The flexibility of the MIPS MT architecture as a multithreading framework has been
demonstrated in the development of four different operating system models. All of them
proved usable, and each has its distinct advantages.
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7.1 Asymmetric Multiple Virtual Processors (AMVP)

In this model, different operating systems execute on different VPEs of the same proc-
essor core. Typically, this consists of a feature-rich multi-tasking OS such a Linux on
one VPE and a low-level real-time OS on the other(s). Such a configuration exploits the
independence of the VPE scheduling domains and allows a single processor core to han-
dle a mix of hard-real-time and high-level user interface functions that would normally
require multiple processors.

7.2 Symmetric Multiple Virtual Processors (SMVP)

As each VPE of a MIPS MT processor implements the full MIPS privileged resource
architecture, it is trivial to adapt an SMP operating system to treat each VPE as a CPU.
The level of concurrency available to applications is limited to the number of VPEs. In
the case of a single-core system, if caches are common to all VPEs, interprocessor cache
coherence support can be optimized out.

7.3 Symmetric Multiple TC (SMTC)

An SMTC OS extends SMP processor management to the TC level, so that a MIPS MT
TC appears to the user to be a full CPU in an SMP system, allowing a higher degree of
concurrency to be exploited. Since TCs do not implement the full privileged resource
architecture, some features must be emulated by the OS, at some cost in complexity and
performance.

7.4 The ROPE Kernel

The ROPE kernel is an experimental Linux kernel for MIPS MT processors. Rather
than being based on an SMP configuration, the ROPE kernel is a uniprocessor kernel in
which each kernel “thread” is itself potentially multithreaded. Each context switch
saves the state of all active TCs of the kernel thread being switched-out, and restores the
state of as many active TCs as were saved for the kernel thread being switched-in. On
a trap or system call, multi-threaded issue is suspended until user-mode execution is re-
sumed. The fact that the kernel model is single-threaded is thus not a problem.

Whereas the SMVP and SMTC kernels activate at boot time all TCs that are to be
used by Linux processes, the ROPE kernel allows for dynamic thread creation/destruc-
tion without OS intervention, using the FORK and YIELD instructions. If more FORKs
are performed than there are allocatable TCs, a Linux signal is sent to the FORKing
process. While SMVP and SMTC OS models allow thread-level concurrency between
unrelated threads and processes, and for both application and OS execution, the ROPE
kernel supports only application-level concurrency, and only in explicitly multithreaded
programs.

Source code for AMVP, SMVP, and SMTC Linux kernels for the 34K processor has
been accepted by the kernel maintainers and is available from the source repositories at
www.linux-mips.org and www.kernel.org.
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8 Experimental Results

The following are experimental results obtained on an FPGA implementation of the
34K processor with 5TCs, running on the MIPS Malta™ development board, using the
ROPEbench framework developed by Jacob Leverich of Stanford. Each benchmark is
run for a constant large number of iterations, divided among some number of software
threads. The results are the calculated cycles-per-iteration. 

On a uniprocessor configuration, each software thread is a pthread, time-sharing a
single virtual CPU. In the SMTC configurations, each pthread represents a kernel thread
scheduled according to standard SMP algorithms across 5 virtual CPUs. In the ROPE
configuration, each pthread represents a ROPE microthread, of which the kernel has no
direct knowledge. The uniprocessor and “SMTC-PT” systems use the pthread mutex
implementation of the Linux glibc 2.4. The “SMTC-ITC” and ROPE systems use an ex-
perimental library using MIPS MT ITC cells mapped into the program’s address space.

8.1 Synchronization

The “Ferris wheel” benchmark measures synchronization costs between threads, where
N threads are organized as a logical ring, each repeatedly acquiring a lock that must first
be released by its predecessor. It’s inner loop is:

for (i = 0; i < count; i++) {
lock(wheel, me);
unlock(wheel, next);

}

There are two noteworthy phenomena here. One is that the classical software pthread
implementation degrades significantly as SMP threads are added. In the uniprocessor
case, it is only by a rare accident of pre-emption that there will be contention for a low-
level lock, but with multiple concurrent instruction streams active, such contention be-
comes increasingly likely.

The second phenomenon worth noting is that using the MIPS MT ITC store to im-
plement the mutex in hardware is more than an order of magnitude faster, and does not
suffer from the same scaling problems.

Table 1. Ferris Wheel

Cycles/
Iteration

1 Thread 2 Threads 3 Threads 4 Threads 5 Threads

Uniprocessor 414 2046 2494 2792 3004

SMTC-PT 572 2052 11833 13556 14451

SMTC-ITC 27 19 19 19 19

ROPE 26 18 18 18 18
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8.2 Thread Creation/Destruction

The “Split/Join” benchmark creates threads which promptly exit, and synchronizes with
their termination. The inner loop looks like:

for (i = 0; i < count; i++) {
thread_t th;
thread_create(&th, slave, NULL);
thread_join(th);

}

Note that the inner loop is itself executed concurrently by each of the test threads, so
the maximum number of threads executing is twice the number of test threads. As the
34K test platform was equipped with only 5 TCs, the ROPE kernel could not support
more than 2 test threads. As noted in section 3.1, failing FORK instructions can be
trapped and emulated by an OS, but this was not implemented in the ROPE kernel
prototype.

Within the limitations of hardware, however, the ROPE runtime’s use of the MIPS
MT FORK instruction is at least 60 times as efficient, at the system level, as the standard
pthread library and SMP OS. 

8.3 Latency Tolerance

The type and degree of latency tolerance that can be realized with a MIPS MT processor
is very much a function of the microarchitecture of the particular processor. The
MIPS32 34K has a relatively simple single-issue, in-order pipeline, but can switch
threads on a cycle-by-cycle basis to fill memory and functional unit stalls. 

8.3.1 Memory Latency
The effectiveness of multithreading in tolerating memory latency can be observed in
comparing the results of two memory benchmarks, one of which issues load every 8 in-
structions which hits in the cache, the other of which differs only in that the address cal-
culation always results in a cache miss.

Table 2. Split/Join

Cycles/
Iteration

1 Thread 2 Threads 3 Threads 4 Threads 5 Threads

Uniprocessor 34990 31790 31361 33042 33070

SMTC-PT 38193 29978 29736 30276 29730

SMTC-ITC 39150 31125 29473 29450 30660

ROPE 583 404 - - -
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The interleaving of execution with load stall time more than doubles the throughput
of this particular test, so long as 3 or more TCs are active.

Memory latency affects not only data references, but also instruction fetches. The
34K processor core fills stall cycles due to instruction cache misses, provided that there
are instructions in some other IB that can be issued. But if the processor is experiencing
a large number of instruction cache misses, by definition, the number of available in-
structions in the IBs is reduced, limiting the opportunity for multithreaded issue.

The experiment for measuring the effects of multithreading on instruction cache
miss-intensive code consists of a set of linear instruction sequences, one for each thread,
each larger than the instruction cache of the processor. Each sequence consists of a se-
ries of 5000 jumps forward to the next cache line. As the 34K processor’s cache line
size is four words, the sequence looks like the following.

                      ...
labelN:

j labelNplus1
nop
nop
nop

labelNplus1:
j labelNplus2
...

Table 3. Load Cache Hit

Cycles/
Iteration

1 Thread 2 Threads 3 Threads 4 Threads 5 Threads

Uniprocessor 9.1 9.0 9.1 9.1 9.0

SMTC-PT 9.6 8.5 8.4 8.2 8.2

SMTC-ITC 9.7 8.5 8.4 8.2 8.2

ROPE 9.1 8.0 8.1 8.0 8.1

Table 4. Load Cache Miss

Cycles/
Iteration

1 Thread 2 Threads 3 Threads 4 Threads 5 Threads

Uniprocessor 95 95 95 95 95

SMTC-PT 99 54 42 37 35

SMTC-ITC 88 53 43 37 35

ROPE 83 51 41 37 34
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The 34K processor implementation used in this experiment has only two memory trans-
action buffers for instruction cache fills, with pre-arbitration and reservation of a buffer for
the first thread to be stalled on the instruction fill resource. The experimental data reflects
these implementation details: Runs with two and three threads show some significant over-
lap of fetch miss stalls, but adding more threads beyond the first 3 adds additional resource
contention without any corresponding increase in hardware concurrency.

8.3.2 Functional Unit Latency
The 34K microarchitecture also exploits scheduling opportunities created by functional
unit stalls for operations with more than a single-cycle latency. The following loop
compiles to 7 instructions, 5 of which are targeted multiplies.

for (i = 0; i < count; i++) {
r1 *= 239875981;
r2 *= r1;
r3 *= r2;
r4 *= r3;
r5 *= r4;

          }

As was the case with the cache miss benchmark, the effective multiply throughput is
more than doubled when 3 or more threads are used.

Table 5. Instruction Cache Miss

Cycles/Jump 1 Thread 2 Threads 3 Threads 4 Threads 5 Threads

Uniprocessor 45 45 45 45 45

SMTC-PT 48 31 31 34 37

SMTC-ITC 48 31 30 34 38

ROPE 45 30 30 34 38

Table 6. Integer Multiplication

Cycles/
Iteration

1 Thread 2 Threads 3 Threads 4 Threads 5 Threads

Uniprocessor 21 21 21 21 21

SMTC-PT 22 14 11 9 8

SMTC-ITC 22 14 11 9 8

ROPE 21 13 10 9 8
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9 Conclusions

The MIPS MT architecture represents another case of supercomputer architecture tech-
niques of the 20th century finding application in the embedded systems of the 21st
century. The effectiveness of multithreading for latency tolerance is demonstrable in
small-scale systems. The effectiveness of multithreading for latency avoidance, given
the architectural support of MIPS MT, is less hostage to other system design parame-
ters, and at least as relevant to practical application in real-time and embedded domains.
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Abstract. With multicore processors becoming the standard architecture, pro-
grammers are faced with the challenge of developing applications that capitalize
on multicore’s advantages. This paper presents rMPI, which leverages the on-
chip networks of multicore processors to build a powerful abstraction with which
many programmers are familiar: the MPI programming interface. To our knowl-
edge, rMPI is the first MPI implementation for multicore processors that have
on-chip networks. This study uses the MIT Raw processor as an experimentation
and validation vehicle, although the findings presented are applicable to multi-
core processors with on-chip networks in general. Likewise, this study uses the
MPI API as a general interface which allows parallel tasks to communicate, but
the results shown in this paper are generally applicable to message passing com-
munication. Overall, rMPI’s design constitutes the marriage of message passing
communication and on-chip networks, allowing programmers to employ a well-
understood programming model to a high performance multicore processor ar-
chitecture.

This work assesses the applicability of the MPI API to multicore processors
with on-chip interconnect, and carefully analyzes overheads associated with com-
mon MPI operations. This paper contrasts MPI to lower-overhead network inter-
face abstractions that the on-chip networks provide. The evaluation also compares
rMPI to hand-coded applications running directly on one of the processor’s low-
level on-chip networks, as well as to a commercial-quality MPI implementation
running on a cluster of Ethernet-connected workstations. Results show speedups
of 4x to 15x for 16 processor cores relative to one core, depending on the appli-
cation, which equal or exceed performance scalability of the MPI cluster system.
However, this paper ultimately argues that while MPI offers reasonable perfor-
mance on multicores when, for instance, legacy applications must be run, its large
overheads squander the multicore opportunity. Performance of multicores could
be significantly improved by replacing MPI with a lighter-weight communica-
tions API with a smaller memory footprint.

1 Introduction

Next-generation microprocessors will increasingly rely on parallelism, as opposed to
frequency scaling, for improvements in performance scalability. Microprocessor de-
signers are attaining such parallelism by placing multiple processing cores on a single
piece of silicon, a feat now achievable thanks to the technology scaling described by
Moore’s Law [2]. Most multicore processors such as the POWER5 and AMD Opteron
800 force interprocessor communication to go through the memory system, which can
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be slow, but some offer first-class on-chip inter-core network support. Technology scal-
ing is enabling such network-interconnected parallel systems to be built on a chip, of-
fering users extremely low latency networks. The MIT Raw processor [33], [31], [30],
[32] builds on this idea and provides a prototype to evaluate these ideas. Raw includes
first-class instruction set architecture (ISA) support for inter-processor communication,
enabling orders of magnitude improvement in communication latency.

This paper investigates the merits of tightly integrated on-chip networks, especially
in light of their programmability and performance. This paper introduces rMPI, which
provides a scalable interface that allows transparent migration of the large extant legacy
code base which will have to run on multicores. rMPI leverages the on-chip network of
the Raw multicore processor to build an abstraction with which many programmers are
familiar: the Message Passing Interface (MPI). The processor cores that constitute chip
multicores (CMPs) such as Raw are tightly coupled through fast integrated on-chip net-
works, making such CMPs quite different from more traditional heavily-decoupled par-
allel computer systems. Additionally, some CMPs eliminate many layers of abstraction
between the user program and underlying hardware, allowing programmers to directly
interact with hardware resources. Because of the removal of these layers, CMPs can
have extremely fast interrupts with low overhead. Removing standard computer sys-
tem layers such as the operating system both represents an opportunity for improved
performance but also places an increased responsibility on the programmer to develop
robust software. These and other novel features of multicore architectures motivated
designing rMPI to best take advantage of the tightly-coupled networks and direct ac-
cess to hardware resources that many CMPs offer. rMPI offers the following features:
1) robust, deadlock-free, and scalable programming mechanisms; 2) an interface that
is compatible with current MPI software; 3) an easy interface for programmers already
familiar with high-level message passing paradigms; 4) and fine-grain control over their
programs when automatic parallelization tools do not yield sufficient performance.

Multicores with low-latency on-chip networks offer a great opportunity for perfor-
mance and energy savings [29], [33]. However, this opportunity can be quickly squan-
dered if programmers do not structure their applications and runtime systems in ways
that leverage the aforementioned unique aspects of multicores. Multicores with on-
chip networks and small on-chip memories usually perform best when data are com-
municated directly from core to core without accessing off-chip memory, encouraging
communication-centric algorithms[33]. Multcores also perform well when the underly-
ing networks provide the ability to send fine-grain messages between cores within a few
cycles. MPI was originally developed 15 years ago assuming coarser-grain communi-
cation between cores and communication overhead usually included operating system
calls and sockets overhead. rMPI allows investigation into how well MPI, given its
assumptions about system overheads, maps to multicore architectures with on-chip net-
works.

The evaluation of rMPI presented in this paper attempts to understand how well
it succeeds in offering the above-mentioned features, and if MPI is still an appropri-
ate API in the multicore domain. rMPI is evaluated in comparison to two references.
To develop a qualitative intuition about the scaling properties of rMPI, it is compared
against LAM/MPI, a highly optimized commercial MPI implementation running on
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a cluster of workstations. Additionally, it is compared against hand-coded and hand-
orchestrated applications running on one of Raw’s low-level on-chip dynamic networks
on top of which rMPI was built. The comparison against the Raw network is an at-
tempt to determine the overhead imposed by features that rMPI offers, which include
the MPI programming interface, removal of sub-application-level deadlock potential,
and automatic message packetization/reassembly. The sources of rMPI’s overhead are
determined by analyzing where cycles are spent in enacting both a send and a receive
using MPI function calls for both short and long messages. Overall, we show that rMPI
running on Raw can provide performance scalability that is comparable to a commercial
MPI implementation running on a cluster of workstations by leveraging the underlying
network architecture of the Raw processor. However, rMPI’s overhead relative to the
GDN varies from 5% to nearly 500%.

The rest of this paper is organized as follows. Section 2 provides an overview of the
Raw architecture, focusing on the resources that are especially relevant to rMPI’s design
and operation. Section 3 discusses rMPI’s design at a high level, and describes some of
its optimizations. Section 4 provides detailed results. Section 5 discusses other work
related to message passing on parallel computer systems. Finally, Section 6 concludes
the paper.

2 Background

RAW PROCESSOR. Before investigating rMPI’s design and implementation, a brief
overview of the Raw processor must be given. The Raw processor consists of 16 iden-
tical tiles, which each contain a processing core and network components that allow
for interprocessor communication. The processing cores each have an 8-stage in-order
single-issue MIPS-style processing pipeline and a 4-stage single-precision pipelined
FPU. The Raw chip also has four register-mapped on-chip networks which are exposed
to the programmer through the Raw ISA. Additionally, tiles contain 32KB of hardware-
managed data cache, 32KB of software-managed instruction cache, and 64KB of
software-managed switch instruction memory. The Raw prototype was implemented
in hardware with an ASIC process, and has been shown to perform well on a variety of
application types [33].

Raw’s software-exposed ISA allows programmers to directly control all of the chip’s
resources, including gates, wires, and pins. Programmers of Raw have the ability to
carefully orchestrate data transfer between tiles simply by reading and writing regis-
ters. Raw has four 32-bit full-duplex on-chip networks, two static (routes specified at
compile time) and two dynamic (routes specified dynamically at run time). rMPI lever-
ages one of Raw’s dynamic networks, the General Dynamic Network (GDN), for all
communication between tiles prompted by an MPI communication routine.

rMPI relies on several key features of the GDN that necessitate elaboration. The
GDN is a dimension-ordered wormhole routed network on which messages containing
32-bit header words are sent. In addition to containing routing information. The maxi-
mum GDN message size is 32 words, including the header, and the network guarantees
that GDN messages arrive at the destination tile atomically and in-order. GDN mes-
sages from different senders sent to the same receiver may be interleaved and received
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in a different order relative to the absolute time when each was sent. The GDN’s atom-
icity constraint does guarantee, though, that the contents of individual GDN messages
from different sources will not be interleaved with each other.

If the sending tile must communicate more than 32 words, it must break the message
into pieces, which then must be re-assembled by the receiver. Managing many senders
and many receivers in an all-to-all communication pattern clearly becomes challenging
using the low-level GDN. Additionally, it is trivial to construct a communication pattern
on the GDN which deadlocks the network—the GDN’s input and output network ports
are both blocking, and contain space for only four words and sixteen words of data, re-
spectively. Thus, the programmer must construct programs which manage buffer space
and communication patterns carefully to avoid deadlock. Raw also offers programmers
fast interrupts that take less than 60 clock cycles of overhead for both call and return.
This facility is exploited by rMPI to handle receiving messages from the network in an
interrupt-driven manner.

MPI. In the parallel computing domain, MPI has become the de-facto standard for
writing parallel applications. MPI is not an implementation or a language, but a stan-
dard with which implementations on different parallel computers must comply. Thus,
programs written using MPI are portable: they can be moved from one parallel sys-
tem to another, assuming both systems offer a valid MPI implementation. Overall, such
portability is a key goal of MPI, providing a virtual computing model that hides many
architectural details of the underlying parallel computer. MPI implementations exist
for most high performance parallel computer systems, with LAM/MPI [6], [28] and
MPICH [15], [34] being two of the most popular.

The MPI standard [10], [9] includes primitives for blocking and non-blocking point-
to-point communications, collective operations (e.g., broadcast, scatter and gather), pro-
cess groups, communication topologies, and bindings for C, C++, and Fortran. The MPI
standard is large, containing over 200 function calls. rMPI implements the blocking
point-to-point communication routines (but not the non-blocking routines), collective
operations, MPI datatypes, process groups, and communication topologies for C pro-
grams. More information about MPI is available in [27], [14], [26], [24].

3 Design

This section describes the design, architecture, and implementation of rMPI from a high
level. rMPI is a runtime system that enables users to run MPI programs on Raw. rMPI
leveraged many ideas from well-known open source MPI libraries, such as MPICH [34]
and LAM/MPI [6], [28], but also attempted to implement the MPI standard in a way
that leverages the unique resources that Raw provides. Indeed, multi-core processors
with low-latency on-chip networks and fast interrupts serve as very different hardware
platforms compared to a cluster of workstations interconnected via TCP/IP, and rMPI
reflects these differences. rMPI consists of over 75,000 lines of code, written mostly in
ANSI C. Much more detail on rMPI’s implementation can be found in [25].

Figure 1 shows rMPI’s system architecture. Upon invoking an MPI routine, the user’s
program calls into the high-level MPI layer, which implements the public MPI API
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User’s MPI Application
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High-Level MPI Layer

Collective CommunicationsrMPI

Fig. 1. The rMPI system architecture
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Fig. 2. Packet format of a 65-payload-word
rMPI message. The first packet contains a
full rMPI header, while the later two pack-
ets only contain the sender ID.

functions. This layer is responsible for preparing the MPI request for processing by
lower layers and handles tasks such as argument checking and data buffer management.
This top layer also determines how to best utilize the low level communication rou-
tines, and directly invokes them for point-to-point communication. The point-to-point
layer implements basic communication primitives through which all communication
takes place. This layer interacts directly with Raw’s hardware mechanisms, includ-
ing reading and writing from the GDN network ports. The collective communication
layer is invoked by the high-level MPI layer for collective communications operations.
This layer implements high-level collective communication algorithms such as broad-
cast and scatter/gather, and ultimately also calls down into the point-to-point layer for
communication. The high-level MPI layer and collective communication layer leverage
some of the code base from the LAM/MPI implementation, although much of it was
re-implemented for rMPI.

The collective communications layer implements high-level communication prim-
itives such as broadcast and scatter/gather. This layer is called directly by the user
program, and ultimately performs the communication operations by calling into the
point-to-point layer. More implementation detail can be found in [25].

The point-to-point layer interacts with Raw directly, and is responsible for sending
and receiving all data between tiles. As alluded to in Section 2, rMPI takes care of
breaking up messages larger than 32 words into packets that are sequentially injected
into the network as GDN messages. It does this by prepending an rMPI header to each
packet to encode metadata required by the MPI standard (e.g., tag, size, etc.) and also so
the receiver can associate incoming packets with logical MPI messages. Figure 2 shows
how a logical message with 65 payload words is broken up into three packets, each
with appropriate headers as just described. Each receiving tile registers all outstanding
receive requests, and is therefore able to reassemble messages using the minimal rMPI
headers. The rMPI header length was heavily optimized to improve effective network
bandwidth for message payloads; the first packet of any logical MPI message includes
a four-word header (source, tag, length, communication context), and subsequent pack-
ets just contain a one-word header which encodes the source of the message. Such small
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headers attempt to mitigate MPI overhead for short messages, and maximize the benefit
of Raw’s low-latency on-chip networks.

Messages are received in the point-to-point layer by using Raw’s fast interrupt han-
dler routine. That is, when a message arrives on the GDN input port of a tile, an interrupt
fires, and the receiving tile’s control flow immediately jumps into the interrupt handler.
The interrupt handler proceeds to drain the GDN network into temporary dynamically-
allocated buffers, keeping track of header information and sorting packet payloads ap-
propriately. The on-chip cache and off-chip DRAM is used for the temporary storage;
large amounts of temporary storage require extra time to buffer, as they are stored in
off-chip DRAM, unless they are consumed immediately by the receiver in a streaming
manner. The interrupt handler is arguably the most complex component in rMPI. As
packets can be received over multiple invocations of the interrupt handler, and packets
from multiple senders can be interleaved, the interrupt hander must carefully sort them
out and keep track of the status of each incoming message. Further, the interrupt han-
dler must share some of its data structures with the rest of the system, as the user-level
thread must be able to access the buffer where the handler stores messages.

An interrupt-driven design was chosen over a standard blocking receive design for a
number of reasons. First, an interrupt-driven design allows MPI programs to make asyn-
chronous progress on both communication and computation. Messages are received
as soon as they arrive, and otherwise each processor can continue computation. The
interrupt-driven design also reduces the potential for network congestion, since Raw’s
internal network buffering is minimal (4 words per input and output port per tile) and
sends are blocking. Because of this, deadlock could easily occur in a blocking receive
design. Since the interrupt handler always drains the network of its contents immedi-
ately, deadlock can not occur at the network level. The interrupt-driven design may not
have made sense in some other contexts where interrupts must go through the operating
system and are therefore slow, but Raw’s interrupts take on the order of 60 cycles of
overhead, and therefore made sense in this context. Finally, the interrupt-driven design
was straightforward from an algorithmic standpoint; all tiles are able to continue com-
puting unless data is available to be received, thereby always allowing forward progress
to be made.

A number of optimizations in the interrupt handler improved the overall performance
of rMPI. In the case where a particular message arrives at a tile before the MPI re-
ceive call for that message was called by the user program, the interrupt handler must
buffer the message contents. However, when the user program requests a message be-
fore it arrives, rMPI registers a posted receive entry with the user’s buffer address.
When the message finally arrives, the interrupt handler places the payload directly into
the user’s buffer instead of storing it into temporary memory, thereby eliminating a
memory copy operation, which can be quite expensive for very large messages. This
optimization yields the following speedups (averaged over multiple messages) over the
non-optimized system: 2.47× for a 1-word message; 1.80× for a 100-word message;
1.18× for a 10,000-word message. Note that this optimization significantly improves
performance of small messages because the receiver does not have to instantiate the
data structures and bookkeeping mechanisms that are normally necessary to buffer
an unexpected message. Larger messages also benefit from not having to perform a
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memory copy operation. Raw’s direct access to low-level hardware resources made such
optimizations straightforward to implement. rMPI also optimizes for the case where a
process sends to itself by circumventing the typical data structures and network hard-
ware that are normally traversed.

4 Evaluation and Analysis

METHODOLOGY. This section presents experimental results that show rMPI pro-
vides reasonably good performance for the Raw architecture, but points out a num-
ber of places where the MPI abstraction imposes overly large overheads. It discusses
various performance metrics such as latency, bandwidth, and performance scalability
on a number of kernel benchmarks and applications. The evaluations use two bases
for comparison in evaluating rMPI: hand-programmed native GDN, running on Raw,
and LAM/MPI, running on a Beowulf cluster of workstations. While tedious and time-
consuming to implement, hand-coded GDN programs generally provide a performance
upper-bound for a given algorithm that uses the Raw GDN. Thus, experiments compar-
ing rMPI programs to native GDN programs offer an assessment of rMPI’s overhead
and performance scalability. The experiments that compare rMPI programs to MPI pro-
grams running on a cluster of Ethernet-interconnected workstations also give insight
into the scalability of rMPI, but relative to a drastically different hardware platform
using a different MPI implementation.

As described in [33], Raw’s instruction cache is managed by software. While this
caching system provides an array of benefits and much flexibility, it has not yet been
optimized, and therefore had a degrading effect on the performance of rMPI programs
because of the rMPI library’s large size. Thus, the results presented in this section were
collected using the Raw simulator with a 256kB instruction cache (as opposed to Raw’s
normal instruction cache size of 32kB), large enough to mitigate the effects of Raw’s
software instruction caching system. The effect that the instruction cache size has on
performance is discussed later in this section.

One of the most common parallel processing platforms today that is used to run MPI
programs is a “Beowulf” cluster: a collection of workstations interconnected by some
commodity interconnect such as Ethernet. This section compares the scalability of MPI
programs running on rMPI and on LAM/MPI. The results presented here were collected
on a cluster containing 128 nodes, each containing 2 2GHz 64-bit AMD Opteron pro-
cessors. Each node contains 4GB of memory, and they are connected using 10GB/sec
Ethernet over TCP/IP. For this experiment, only one processor from each node was
used at any given time, forcing inter-node communication to always occur over the Eth-
ernet connection. The speedups of four MPI applications were computed relative to a
single processor on each respective platform running a serial implementation of each
application. The same serial and MPI source codes were run on both platforms, and the
speedups were calculated using cycle counts. Normalizing each platform by a single
processor of itself essentially removed many system-dependent variables such as pro-
cessor clock frequency and memory system performance, so the evaluation could focus
on the scalability of the systems’ interconnects and software.
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MPI Send Call 1 word 10000
words

Argument Checking 67.26% 0.09%
Envelope Construction 5.52% 0.01%
Sending headers and
payload, packetization

27.22% 99.90%

MPI Receive Call 1 word 10000
words

Reading data from net-
work

7.29% 36.16%

Call into and out of in-
terrupt handler

7.75% 0.02%

Argument Checking,
function call overhead

32.82% 0.09%

Bookkeeping and
packet sorting

52.14% 63.74%

Fig. 4. Cycle breakdowns for an MPI Send and
MPI Recv for 1 and 10000 words

END-TO-END OVERHEAD ANALYSIS. Figure 3 shows the overhead of rMPI for
messages of length 1 word to 10 million words transmitted from one tile on the Raw
chip to an adjacent tile that continuously consumes the incoming message data. The
overhead was calculated using total latency of the rMPI send/receive pair relative to a
hand-coded send/receive pair on the native GDN. “Overhead cycles” include the total
time, in cycles, from transferring a memory buffer from the sending core to a memory
buffer in the receiving core, not counting the 1 cycle per word network latency. The
rMPI overhead for very short messages is quite large—it takes 1080 cycles of overhead
to send a 1-word message, and 126 cycles of overhead per word for a ten-word message.
As the message size grows from 10 to 100 words, the difference of end-to-end latencies
narrows; rMPI’s overhead is 30 cycles per word for a 10000-word message, compared
to 12 cycles per word for the native GDN version. Given that multicores will likely
be frequently programmed with finer-grain communication patterns, MPI’s significant
overhead for short messages squashes the benefit of multicore. For larger message sizes,
MPI’s overhead is more palatable.

To further understand the cause of rMPI’s overhead, experiments were run to capture
where rMPI spends its time during an MPI Send and MPI Recv for the same single-
sender, single-receiver latency test, seen in Table 4. For the 1-word case, 67% of cycles
are spent on argument checking (to preserve MPI semantics) and function call overhead,
and another 5.5% is spent constructing the rMPI message envelope. However, both of
these actions only occur once in any MPI Send call. Hence, virtually all of the time in
sending a 10000-word message is spent breaking the messages into packets and pushing
them out to the GDN. Thus, the fixed overhead due to MPI Send is amortized for large
message sends, explaining the overhead drop from 1080 cycles for a one-word message
to 30 cycles for a 10000-word message.
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Table 4 also shows the same analysis for MPI Recv. In the 1-word case, 33% of the
cycles are spent calling into the rMPI library and checking arguments, and over 50%
were spent managing bookkeeping data structures and sorting packets. About 8% of the
time was spent calling into the interrupt handler, and only 7% of the time was spent
actually receiving and storing data from the network. Contrasting this to the 10000-
word message case, it is once again clear that some of the overhead is fixed argument
checking and calling in and out of the interrupt handler accounts for about 0.1% of
the total cycles. Over 1/3 of the time is spent receiving data from the network, and
nearly two-thirds of the cycles are spent managing the packet sorting and data structure
bookkeeping. In fact, only 0.02% of cycles were spent managing data structures before
the data was available, and only 0.04% of cycles were spent managing data structures
after the message was completely received. Thus, sorting and demultiplexing packets
while they are arriving consumes a relatively large portion of the time in an MPI Recv.

While the GDN’s “to-the-metal” access to underlying network resources enables it
to achieve extremely efficient communication, it is sufficiently challenging to program
that programmers would not want to use it directly in most cases. MPI provides easy-to-
use high-level abstractions, but such high overheads for small messages, that it wastes
much of the benefits (e.g., low-latency inter-core communication) that multicore pro-
vides. Thus, neither low-level GDN programming nor high-level MPI programming
provides the appropriate balance of performance and programmability for multicore.
While this work does not investigate new programming models for multicore, the over-
head analysis can be used to help direct designers of future lightweight multicore pro-
gramming interfaces. For instance, one of the aspects of the GDN that makes it so hard
to program is that large messages must be broken into packets, and re-assembled by the
receiver in software by the user program. Furthermore, the receiver must also sort pack-
ets from different senders in software. A lightweight API that provides simple facilities
for sending large messages and sorting them appropriately would be quite beneficial
to the programmer. The API should also help prevent deadlock by keeping track of
network buffering, and alert the user program when buffer space is full. This middle
ground between direct GDN programming and MPI would hopefully offer most of the
programmability of MPI, without the extra overhead of significant argument checking
and many layers of function call overhead.

PERFORMANCE SCALING. This section analyzes four applications run on rMPI,
the native GDN, and LAM/MPI.

Jacobi Relaxation. The jacobi relaxation algorithm was evaluated on all three plat-
forms. While programming this application using the native GDN directly was tedious
and time-consuming, it is seen as an upper bound for performance scalability because
of its extremely low overhead for sending and receiving. The algorithm was run on
2-dimensional floating point matrices with sizes ranging from 16×16 to 2048×2048.
Figure 5 shows the results for the 16×16 case. With very small input data sizes, the
low overhead GDN is the only configuration that actually yields a speedup. rMPI and
LAM/MPI are both slower than the serial version of the code for this input data size. In
fact, LAM/MPI slows down even more when 8 and 16 processors are used. The slow-
down for rMPI and LAM/MPI is caused by the low computation-to-communication
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ratio; there is simply not enough computation to effectively amortize the cost imposed
by the MPI semantics. On the other hand, the extremely low overhead of the GDN can
achieve a non-trivial speedup despite the small input matrix.

For an input matrix size of 2048×2048, the three configurations scale very similarly,
as seen in Figure 6. This is congruent with intuition: the low-overhead GDN outper-
forms both MPI implementations for small input data sizes because its low overhead
immunizes it against low computation-to-communicationratios. However, the MPI over-
head is amortized over a longer running program with larger messages in this case. rMPI
even outperforms the GDN in the 16 processor case, which is most likely a due to mem-
ory access synchronization on the GDN, as the GDN algorithm is broken into phases in
which more than one processor accesses memory at the same time. Contrastingly, the
interrupt-driven approach used in rMPI effectively staggers memory accesses, and in
this case, such staggering provides a win for rMPI.

Figure 7 summarizes the speedup characteristics for the GDN, rMPI, and LAM/MPI.
Again, the GDN achieves a 3x speedup immediately, even for small input data sizes.
On the other hand, both MPI implementations have slowdowns for small data sizes, as
their overhead is too high and does not amortize for low computation to communication
ratios. rMPI starts to see a speedup before LAM/MPI, though, with an input data matrix
of size 64×64. One potential reason rMPI exhibits more speedup is its fast interrupt
mechanism and lack of operating system layers.

One clearly interesting input data size for the GDN and rMPI graphs is 512×512:
both show a significant speedup spike. Figure 8, which shows the throughput (com-
puted elements per clock cycle) of the serial jacobi implementation running on Raw,
sheds some light on why this speedup jump occurs. Up until the 512×512 input size,
the entire data set fit into the Raw data cache, obviating the need to go to DRAM. How-
ever, the 512×512 data size no longer fit into the cache of a single Raw tile. Hence, a
significant dip in throughput occurs for the serial version for that data size. On the other
hand, since the data set is broken up for the parallelized GDN and rMPI versions, this
cache bottleneck does not occur until even larger data sizes, which explains the jump
in speedup. It should be noted that this distributed cache architecture evident in many
multicore architectures can be generally beneficial, as it allows fast caches to be tightly
coupled with nearby processors.
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Figure 3 characterizes the overhead of rMPI for a simple send/receive pair of pro-
cessors on the Raw chip. To characterize rMPI’s overhead for real applications, which
may have complex computation and communication patterns, the overhead of rMPI was
measured for jacobi. The experiment measured the complete running time of jacobi ex-
periments for various input data sizes and numbers of processors for both the GDN and
rMPI implementations. Figure 9 shows the results of this experiment. Here, rMPI over-
head is computed as overheadrMPI = (cyclesrMPI − cyclesGDN)/(cyclesGDN).

As can be seen, rMPI’s overhead is quite large for small data sets. Furthermore, its
overhead is particularly high for small data sets running on a large number of pro-
cessors, as evidenced by the 16×16 case for 16 processors, which has an overhead of
nearly 450%. However, as the input data set increases, rMPI’s overhead drops quickly.
It should also be noted that for data sizes from 16×16 through 512×512, adding pro-
cessors increases overhead, but for data sizes larger than 512×512, adding processors
decreases overhead. In fact, the 1024×1024 data size for 16 processors has just a 1.7%
overhead. The 2048×2048 for 16 processors actually shows a speedup beyond the GDN
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implementation. This is most likely due to memory access synchronization, as described
above, and does not generally hold true for all applications.

Instruction Cache Size Sensitivity. As mentioned in Section 1, many multicore de-
signers are opting for fairly simple cores in order to fit many of them on a single chip.
Likewise, the cores of such systems will likely have a smaller amount of on-chip mem-
ory than monolithic processors such as the Pentium 4 have. As such, it is important that
the memory footprint of multicore programs be small enough that instruction cache
misses do not significantly hurt performance. The rMPI library, however, is large, con-
taining over 200 top-level MPI API calls with a total text segment size of 160kB. In
order to measure the effect of instruction cache misses on multicores, jacobi was run
with various instruction cache sizes using a standard hardware instruction cache model.
Figure 10 shows that performance improves by 40% as the per-core instruction cache
size grows from 2kB to 64kB. At that point, increasing the cache size further has no
impact on performance. For more complex MPI programs that use much more of the
API than the jacobi benchmark does, the impact on performance of small instruction
caches would be even more severe (this implementation of jacobi only makes use of 6
MPI calls).

This experiment reinforces the notion that MPI is most likely too large and heavy-
weight for multicore processors. A ligher-weight alternative that fits entirely in the in-
struction cache for multicores with small instruction memories would be better suited
to multicores’ constraints.

Scalability of Other Applications. In an attempt to further characterize the perfor-
mance scalability of rMPI, three other applications were evaluated. The applications
were run using both rMPI on Raw and LAM/MPI on the cluster. As before, the sequen-
tial versions of each application were run on each respective architecture to determine
baseline performance. Note that a GDN version of these applications was not evalu-
ated, as developing non-trivial applications on the GDN is quite time-consuming and
tedious, and the above experiments with jacobi served as a solid comparison. The three
applications used in this evaluation are matrix multiplication, trapezoidal integration,
and pi estimation. The matrix multiply benchmark uses a standard 2-dimensional ma-
trix multiplication algorithm that is parallelized in a master-slave configuration. The
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results for the matrix multiplication experiment multiplying a 640×150 floating point
matrix by a 150×700 floating point matrix can be seen in Figure 11. As can be seen,
LAM/MPI outperforms rMPI in terms of speedup for the experiments that used 2, 4,
and 8 processors, while rMPI has a larger speedup for the 16 processor case.

One potential reason rMPI has greater speedup relative to LAM/MPI for larger num-
bers of processors has to do with the shape of rMPI’s and LAM/MPI’s latency curves
for increasing message sizes. As seen in Figure 3, the latency for a send/receive pair
for rMPI increases proportionately as message sizes increase for message sizes larger
than 10 words. As mentioned above, the end-to-end latency for a one-word message
send/receive is roughly 1000 cycles on rMPI. However, the shape of the LAM/MPI la-
tency curve is notably different, as can be seen in Figure 12. First of all, the overhead for
sending a single-word message from one process to another on LAM/MPI is quite high,
taking almost 1 million cycles to complete. This can be attributed to the many software
layers that LAM/MPI must go through to access the network. Additionally, the latency
to send and receive a 10000-word message is roughly the same as sending a 1-word
message. Not until message sizes reach 100000-words and above does the round trip
latency grow.

This empirical result explains why rMPI’s speedup is greater than LAM/MPI’s
speedup for large numbers of processors. In the 16 processor case, the system had to
send 8 times as many messages compared to the 2 processor case. rMPI’s latency in-
creases proportionately with increasing message sizes, so it scaled well as more proces-
sors were introduced. However, the latency for sending smaller messages on LAM/MPI
is not much different than the latency for sending 10000-words. Thus, while rMPI reaps
the savings of smaller messages which ensue in the 16 processor case, LAM/MPI’s large
fixed overhead is the same and therefore does not benefit from smaller messages.

Figure 13 and Figure 14 show the speedups for a parallelized trapezoidal integration
application and a parallelized pi estimation algorithm, respectively. Both applications
are similar in terms of their computation-to-communication ratios, which are both quite
large relative to jacobi relaxation. As can be seen in the figures, LAM/MPI generates a
larger speedup for a small number of processors, but rMPI has larger speedups for larger
numbers of processors. rMPI’s performance on trapezoidal with 16 processors is over
double LAM/MPI’s speedup. This result can again be explained by the argument given
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above for the matrix multiplication application. In these cases, the messages are quite
small (20 words or less), so sending many more, as in the 16 processor case, affects
LAM/MPI’s performance more drastically than it does rMPI’s.

In general, though, both applications achieve speedups ranging from approximately
6x – 14.5x on both rMPI and LAM/MPI. These speedups are larger than that of matrix
multiply and jacobi, which algorithmically have significantly lower computation-to-
communication ratios. The results for all four applications evaluated agree with intu-
ition: rMPI and LAM/MPI both exhibit better performance scalability for applications
with larger computation-to-communication ratios.

5 Related Work

A large number of other message passing work have influenced this work. The iWarp
system [5], [16] attempted to integrate a VLIW processor and fine-grained commu-
nication system on a single chip. The INMOS transputer [4] had computing elements
that could send messages to one another. The MIT Alewife machine [19] also contained
support for fast user-level messaging. Other multicore microprocessors include VIRAM
[18], Wavescalar [29], TRIPS [23], Smart Memories [21], [22], and the Tarantula [7]
extension to Alpha. Some commercial chip multiprocessors include the POWER 4 [8]
and Intel Pentium D [1]. This work is applicable to many newer architectures that are
similar to Raw in that they contain multiple processing elements on a single chip.

This paper primarily concentrated on Raw’s dynamic network, but much work has
been done using Raw’s static network, which operates on scalar operands. Prior work
[33], [12] shows considerable speedups can result using the static network for stream
computation. Additionally, there exist a number of compiler systems for Raw that au-
tomatically generate statically-scheduled communication patterns. CFlow [13], for in-
stance, is a compiler system that enables statically-scheduled message passing between
programs running on separate processors. Raw’s rawcc [20] automatically parallelize C
programs, generating communication instructions where necessary.

While this paper showed that MPI can be successfully ported to a multicore archi-
tecture, its inherent overhead causes it to squander the multicore opportunity. The Mul-
ticore Association’s CAPI API [3] offers a powerful alternative—a lightweight API for
multicore architectures that is optimized for low-latency inter-core networks, and boasts
a small memory footprint that can fit into in-core memory. There also exist a number of
MPI implementations for a variety of platforms and interconnection devices, including
MPICH [34], LAM/MPI [6], and OpenMPI [11]. [17] discusses software overhead in
messaging layers.

6 Conclusion

This paper presented rMPI, an MPI-compliant message passing library for multi-core
architectures with on-chip interconnect. rMPI introduces robust, deadlock-free, mecha-
nisms to program multicores, offering an interface that is compatible with current MPI
software. Likewise, rMPI gives programmers already familiar with MPI an easy inter-
face with which to program Raw which enables fine-grain control over their programs.
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rMPI was designed to leverage the unique architectural resources that a multicore pro-
cessor architecture with on-chip networks and direct access to hardware resources such
as Raw provides.

A number of evaluations using the rMPI implementation show that its overhead,
especially for applications with many short messages on multicores such as Raw, il-
lustrates that MPI is likely not the optimal interface for multicores with on-chip inter-
connect, as it imposes significant overhead on all communication. Furthermore, rMPI’s
large memory footprint makes it less well-suited for multicore’s generally smaller on-
chip instruction caches. Overall, this work shows that MPI is too heavyweight for mul-
ticores with on-chip networks such as Raw, and suggests that a lighter-weight multicore
programming interface that takes advantage of low latency networks and has a smaller
memory footprint be developed. The authors hope that this work provides guidance
and useful insights to application developers of future multicore processors containing
on-chip interconnect.
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Abstract. Heterogeneous multi-core processors invest the most signifi-
cant portion of their transistor budget in customized “accelerator” cores,
while using a small number of conventional low-end cores for supplying
computation to accelerators. To maximize performance on heterogeneous
multi-core processors, programs need to expose multiple dimensions of
parallelism simultaneously. Unfortunately, programming with multiple
dimensions of parallelism is to date an ad hoc process, relying heavily on
the intuition and skill of programmers. Formal techniques are needed to
optimize multi-dimensional parallel program designs. We present a model
of multi-dimensional parallel computation for steering the parallelization
process on heterogeneous multi-core processors. The model predicts with
high accuracy the execution time and scalability of a program using con-
ventional processors and accelerators simultaneously. More specifically,
the model reveals optimal degrees of multi-dimensional, task-level and
data-level concurrency, to maximize performance across cores. We use
the model to derive mappings of two full computational phylogenetics
applications on a multi-processor based on the IBM Cell Broadband
Engine.

1 Introduction

To overcome the performance and power limitations of conventional general-
purpose microprocessors, many high-performance systems off-load computation
to special-purpose hardware. These computational accelerators come in many
forms, ranging from SIMD co-processors to FPGA boards to chips with multiple
specialized cores. We consider a computational accelerator as any programmable
device that is capable of speeding up a computation. Examples of high-end
systems utilizing computational accelerators are the Cell Broadband Engine from
IBM/Sony/Toshiba [1], Cray’s XD1 [2], the Starbridge Hypercomputer [3], and
SGI’s FPGA-based NUMA node [4].

The migration of parallel programming models to accelerator-based architec-
tures raises many challenges. Accelerators require platform-specific programming
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interfaces and re-formulation of parallel algorithms to fully exploit the additional
hardware. Furthermore, scheduling code on accelerators and orchestrating par-
allel execution and data transfers between host processors and accelerators is a
non-trivial exercise [5].

Consider the problem of identifying the most appropriate programming model
and accelerator configuration for a given parallel application. The simplest way
to identify the best combination is to exhaustively measure the execution time
of all of the possible combinations of programming models and mappings of
the application to the hardware. Unfortunately, this technique is not scalable to
large, complex systems, large applications, or applications with behavior that
varies significantly with the input. The execution time of a complex application
is the function of many parameters. A given parallel application may consist of
N phases where each phase is affected differently by accelerators. Each phase
can exploit d dimensions of parallelism or any combination thereof such as ILP,
TLP, or both. Each phase or dimension of parallelism can use any of m different
programming and execution models such as message passing, shared memory,
SIMD, or any combination thereof. Accelerator availability or use may consist of
c possible configurations, involving different numbers of accelerators. Exhaustive
analysis of the execution time for all combinations requires at least N ×d×m×c
trials with any given input.

Models of parallel computation have been instrumental in the adoption and
use of parallel systems. Unfortunately, commonly used models [6,7] are not di-
rectly portable to accelerator-based systems. First, the heterogeneous processing
common to these systems is not reflected in most models of parallel computa-
tion. Second, current models do not capture the effects of multi-grain parallelism.
Third, few models account for the effects of using multiple programming models
in the same program. Parallel programming at multiple dimensions and with
a synthesis of models consumes both enormous amounts of programming effort
and significant amounts of execution time, if not handled with care. To overcome
these deficits, we present a model for multi-dimensional parallel computation on
heterogeneous multi-core processors. Considering that each dimension of paral-
lelism reflects a different degree of computation granularity, we name the model
MMGP, for Model of Multi-Grain Parallelism.

MMGP is an analytical model which formalizes the process of programming
accelerator-based systems and reduces the need for exhaustive measurements.
This paper presents a generalized MMGP model for accelerator-based architec-
tures with one layer of host processor parallelism and one layer of accelerator
parallelism, followed by the specialization of this model for the Cell Broadband
Engine.

The input to MMGP is an explicitly parallel program, with parallelism ex-
pressed with machine-independent abstractions, using common programming
libraries and constructs. Upon identification of a few key parameters of the ap-
plication derived from micro-benchmarking and profiling of a sequential run,
MMGP predicts with reasonable accuracy the execution time with all feasible
mappings of the application to host processors and accelerators. MMGP is fast
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Fig. 1. A hardware abstraction of an accelerator-based architecture with two layers
of parallelism. Host processing units (HPUs) supply coarse-grain parallel computation
across accelerators. Accelerator processing units (APUs) are the main computation
engines and may support internally finer grain parallelism. Both HPUs and APUs
have local memories and communicate through shared-memory or message-passing.
Additional layers of parallelism can be expressed hierarchically in a similar fashion.

and reasonably accurate, therefore it can be used to quickly identify optimal
operating points, in terms of the exposed layers of parallelism and the degree of
parallelism in each layer, on accelerator-based systems. Experiments with two
complete applications from the field of computational phylogenetics on a shared-
memory multiprocessor with two Cell BEs, show that MMGP models parallel
execution time of complex parallel codes with multiple layers of task and data
parallelism, with mean error in the range of 1%–5%, across all feasible program
configurations on the target system. Due to the narrow margin of error, MMGP
predicts accurately the optimal mapping of programs to cores for the cases we
have studied so far.

In the rest of this paper, we establish preliminary background and terminology
for introducing MMGP (Section 2), we develop MMGP (Section 3), and we
validate MMGP using two computational phylogenetics applications (Section 4).
We discuss related work in Section 5 and conclude the paper in Section 6.

2 Modeling Abstractions

In this section we identify abstractions necessary to allow us to define a sim-
ple, accurate model of multi-dimensional parallel computation for heterogeneous
multi-core architectures.

2.1 Hardware Abstraction

Figure 1 shows our abstraction of a heterogeneous, accelerator-based parallel
architecture. In this abstraction, each node consists of multiple host processing
units (HPU) and multiple accelerator processing units (APU). Both the HPUs
and APUs have local and shared memory. Multiple HPU-APU nodes form a
cluster. We model the communication cost for i and j, where i and j are HPUs,
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APUs, and/or HPU-APU pairs, using a variant of LogP [6] of point-to-point
communication:

Ci,j = Oi + L + Oj , (1)

where Ci,j is the communication cost, Oi, Oj is the overhead of send and receive
respectively, and L is communication latency.

2.2 Program Abstraction

Figure 2 illustrates the program abstraction used by MMGP. We model programs
using a variant of the Hierarchical Task Graph (HTG [8]). An HTG represents
multiple layers of concurrency with progressively finer granularity when moving
from outermost to innermost layers. We use a phased HTG, in which we partition
the application into multiple phases of execution and split each phase into nested
sub-phases, each modeled as a single, potentially parallel task. The degree of
concurrency may vary between tasks and within tasks.
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Fig. 2. Program abstraction for two parallel tasks with nested parallelism

Mapping a workload with nested parallelism as shown in Figure 2 to an
accelerator-based multi-core architecture can be challenging. In the general case,
any task of any granularity could be mapped to any type combination of HPUs
and APUs. The solution space under these conditions can be unmanageable. We
confine the solution space by making some assumptions about the program and
the hardware. First, we assume that the application exposes all available layers
of inherent parallelism to the runtime environment, without however specifying
how to map this parallelism to parallel execution vehicles in hardware. Second,
we assume hardware configurations consist of a hierarchy of nested resources,
even though the actual resources may not be physically nested in the architec-
ture. For instance, the Cell Broadband Engine can be considered as 2 HPUs and
8 APUs, where the two HPUs correspond to the PowerPC dual-thread SMT
core and APUs to the synergistic (SPE) accelerator cores. This assumption is
reasonable since it represents faithfully current accelerator architectures, where
front-end processors off-load computation and data to accelerators. This assump-
tion simplifies modeling of both communication and computation.
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3 Model of Multi-grain Parallelism

This section provides theoretical rigor to our approach. We begin by modeling
sequential execution on the HPU, with part of the computation off-loaded to
a single APU. Next, we incorporate multiple APUs in the model, followed by
multiple HPUs.

3.1 Modeling Sequential Execution

As the starting point, we consider an accelerator-based architecture that consists
of one HPU and one APU, and a program with one phase decomposed into three
sub-phases, a prologue and epilogue running on the HPU, and a main accelerated
phase running on the APU, as illustrated in Figure 3. Off-loading computation

HPU_1

APU_1

shared Memory

Phase_1

Phase_2

Phase_3

(a) an architecture with one HPU and one APU (b) an application with three phases

Fig. 3. The sub-phases of a sequential program are readily mapped to HPUs and APUs.
In this example, sub-phases 1 and 3 execute on the HPU and sub-phase 2 executes on
the APU. HPUs and APUs communicate via shared memory.

incurs additional communication cost, for loading code and data, in the case of
a software-managed APU memory hierarchy, and committing results calculated
from the APU. We model each of these communication costs with a latency and
an overhead at the end-points, as in Equation 1. We assume that APU’s accesses
to data during the execution of a procedure are streamed and overlapped with
APU computation. This assumption reflects the capability of current streaming
architectures, such as the Cell and Merrimac, to aggressively overlap memory
latency with computation, using multiple buffers. Due to overlapped memory
latency, communication overhead is assumed to be visible only during loading
the code and arguments of a procedure on the APU and during committing the
result of an off-loaded procedure to memory, or sending the result of an off-loaded
procedure from the APU to the HPU. We note that this assumption does not
prevent us from incorporating a more detailed model that accurately estimates
the non-overlapped and overlapped communication operations in MMGP. We
leave this issue as a subject of future work. Communication overhead for off-
loading the code and arguments of a procedure and signaling the execution of
that procedure on the APU are combined in one term (Os), while the overhead
for returning the result of a procedure from the APU to the HPU and committing
intermediate results to memory are combined in another term (Or).
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The execution time for the off-loaded sequential execution for sub-phase 2 in
Figure 3, can be modeled as:

Toffload(w2) = TAPU (w2) + Or + Os (2)

where TAPU (w2) is the time needed to complete sub-phase 2 without additional
overhead. We can write the total execution time of all three sub-phases as:

T = THPU (w1) + TAPU (w2) + Or + Os + THPU (w3) (3)

To reduce complexity, we replace THPU (w1) + THPU (w3) with THPU , TAPU

(w2) with TAPU , and Os +Or with Ooffload. We can now rewrite Equation 3 as:

T = THPU + TAPU + Ooffload (4)

The program model in Figure 3 is representative of one of potentially many
phases in a program. We further modify Equation 4 for a program with N phases:

T =
N∑

i=1

(THPU,i + TAPU,i + Ooffload) (5)

3.2 Modeling Parallel Execution on APUs

Each off-loaded part of a phase may contain fine-grain parallelism, such as task-
level parallelism in nested procedures or data-level parallelism in loops. This
parallelism can be exploited by using multiple APUs for the offloaded workload.
Figure 4 shows the execution time decomposition for execution using one APU
and two APUs. We assume that the code off-loaded to an APU during phase i,
has a part which can be further parallelized across APUs, and a part executed
sequentially on the APU. We denote TAPU,i(1, 1) as the execution time of the
further parallelized part of the APU code during the ith phase. The first index
1 refers to the use of one HPU thread in the execution. We denote TAPU,i(1, p)
as the execution time of the same part when p APUs are used to execute this
part during the ith phase. We denote as CAPU,i the non-parallelized part of APU
code in phase i. Therefore, we obtain:

TAPU,i(1, p) =
TAPU,i(1, 1)

p
+ CAPU,i (6)

Given that the HPU off-loads to APUs sequentially, there exists a latency gap
between consecutive off-loads on APUs. Similarly, there exists a gap between
receiving or committing return values from two consecutive off-loaded procedures
on the HPU. We denote with g the larger of the two gaps. On a system with p
APUs, parallel APU execution will incur an additional overhead as large as p ·g.
Thus, we can model the execution time in phase i as:

Ti(1, p) = THPU,i +
TAPU,i(1, 1)

p
+ CAPU,i + Ooffload + p · g (7)
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3.3 Modeling Parallel Execution on HPUs

Since the compute intensive parts of an application are off-loaded to APUs, HPUs
are expected to be idle for extended intervals. Therefore, HPU multithreading
can be used to reduce idle time on the HPU and provide more sources of work
for APUs.

Figure 5 illustrates the execution timeline when two threads share an HPU,
and each thread off-loads parallel code on two APUs. We use different shade
patterns to represent the workload of different threads.

For m concurrent HPU threads, where each thread uses p APUs for distribut-
ing a single APU task, the execution time of a single off-loading phase can be
represented as:

T k
i (m, p) = T k

HPU,i(m, p) + T k
APU,i(m, p) + Ooffload + p · g (8)
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where T k
i (m, p) is the completion time of the kth HPU thread during the ith

phase. Similarly to Equation 6, we can write the APU time of the k-th thread
in phase i in Equation 8 as:

T k
APU,i(m, p) =

TAPU,i(m, 1)
p

+ CAPU,i (9)

The execution time of each HPU thread is affected by architecture and soft-
ware factors. For a multi-threaded HPU where threads share on-chip execution
resources, these factors include contention between HPU threads for shared re-
sources, context switch overhead related to resource scheduling, and global syn-
chronization between dependent HPU threads. Considering all three factors, we
can model the i-th phase of an HPU thread as:

T k
HPU,i(m, p) = αm · THPU,i(1, p) + TCSW + OCOL (10)

In this equation, TCSW is context switching time on the HPU and OCOL is
the time needed for global synchronization. The parameter αm is introduced to
account for contention between threads that share resources on the HPU. On
SMT and CMP HPUs, such resources typically include one or more levels of the
on-chip cache memory. On SMT HPUs in particular, shared resources include
also TLBs, branch predictors and instruction slots in the pipeline. Contention
between threads often introduces artificial load imbalance due to occasionally
unfair hardware policies of allocating resources between threads.

Combining Equations (8)-(10) and summarizing all phases, we can write the
execution time for MMGP as:

T (m, p) = αm · THPU (1, 1) +
TAPU (1, 1)

m · p
+ CAPU + N · (OOffload + TCSW + OCOL + p · g) (11)

Due to limited hardware resources (i.e. number of HPUs and APUs), we fur-
ther constrain this equation to m × p ≤ NAPU , where NAPU is the number of
available APUs. As described later in this paper, we can either measure directly
or estimate all parameters in Equation 11 from micro-benchmarks and a profile
of a sequential run of the program. Given a parallel program, MMGP can be
applied using the following process:

1. Estimate OOffload, αm, TCSW and OCOL using micro-benchmarks.
2. Profile a run of the sequential program, with annotations of parallelism in-

cluded, to estimate THPU (1), TAPU (1, 1) and CAPU .
3. Solve a special case of Equation 11 (e.g. 7) to find the optimal mapping

between application concurrency and available HPUs and APUs.

4 Experimental Validation and Results

We use MMGP to derive multi-dimensional parallelization schemes for two bioin-
formatics applications, RAxML and PBPI, on an IBM QS20 BladeCenter with
two Cell BEs. RAxML and PBPI construct evolutionary trees from DNA or AA
sequences, using different optimality criteria for approximating the best trees.
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4.1 Parameter Approximation

MMGP has six free parameters, CAPU , Ooffload, g, TCSW , OCOL and αm. We
estimate four of the parameters using micro-benchmarks. αm captures contention
between processes or threads running on the PPE. This contention depends on
the scheduling algorithm on the PPE. We estimate αm under an event-driven
scheduling model which oversubscribes the PPE with more processes than the
number of hardware threads supported for simultaneous execution on the PPE,
and switches between processes upon each off-loading event on the PPE [5]. The
reason for using oversubscribing is the potential imbalance between supply and
demand of computation between the PPE and SPEs.

To estimate αm, we use a parallel micro-benchmark that computes the prod-
uct of two M × M arrays of double-precision floating point elements. Matrix-
matrix multiplication involves O(n3) computation and O(n2) data transfers, thus
stressing the impact of sharing execution resources and the L1 and L2 caches be-
tween processes on the PPE. We used several different matrix sizes, ranging from
100×100 to 500×500, to exercise different levels of pressure on the thread-shared
caches of the PPE. In the MMGP model, we use αm=1.28, computed from these
experiments. We should point out that αm is not a constant in the general case.
However, αm affects only a small portion of the code (executed on the HPU).
Therefore, approximating αm with a constant is a reasonable choice which results
in fairly accurate MMGP predictions, as shown later in this section.

PPE-SPE communication is optimally implemented through DMAs on Cell.
In PBPI and RAxML, the off-loaded code remains in the local storage during the
entire execution of the application. Also, the arguments for the off-loaded func-
tions are fetched directly from the main memory by the SPE thread. Therefore,
the only PPE-SPE communication (Ooffload) is PPE → SPE trigger signal, and
the signal sent back by each SPE after finishing the off-loaded work. We devised
a ping-pong micro-benchmark using DMAs to send a single integer from the
PPE to one SPE and backwards. We measured PPE→SPE→PPE round-trip
communication overhead for a single 4-byte packet to 70 ns. To measure the
overhead caused by various collective communications we used mpptest [9] on
the PPE. Using a micro-benchmark that repeatedly executes the sched yield()
system call, we estimate the overhead caused by the context switching (TCSW )
on the PPE to 2 μs.

CAPU and the gap g between consecutive DMAs on the PPE are application-
dependent and can not be approximated easily with a micro-benchmark. To
estimate these parameters, we use a profile of a sequential run of the code, with
tasks off-loaded on one SPE.

4.2 PBPI Outline

PBPI [10,11] is a parallel Bayesian phylogenetic inference implementation, which
constructs phylogenetic trees from DNA or AA sequences using a Markov chain
Monte Carlo sampling method. The method exploits the multi-dimensional data
parallelism available in Bayesian phylogenetic inference (across the sequence
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and within the likelihood computations), to achieve scalability on large-scale
distributed memory systems, such as the IBM BlueGene/L [12]. The algorithm
used in PBPI can be summarized as follows:

1. Markov chains are partitioned into chain groups and the data set is split into
segments along the sequences.

2. Virtual processors are organized in a two-dimensional grid; each chain group
is mapped to one row on the grid, and each segment is mapped to one column
on the grid.

3. During each generation, the partial likelihood across all columns is computed
using all-to-all communication to collect the complete likelihood values from
all virtual processors on the same row.

4. When there are multiple chains, two chains are randomly chosen for swapping
using point-to-point communication.

PBPI is implemented in MPI. We ported PBPI to Cell by off-loading the compu-
tationally expensive functions that perform the likelihood calculation on SPEs
and applied a sequence of Cell-specific optimizations on the off-loaded code.

4.3 PBPI with One Dimension of Parallelism

We compare the PBPI execution times modeled by MMGP to the actual exe-
cution times obtained on real hardware, using various degrees of PPE and SPE
parallelism, the equivalents of HPU and APU parallelism on Cell. For these ex-
periments, we used the arch107 L10000 input data set. This data set consists
of 107 sequences, each with 10000 characters. We run PBPI with one Markov
chain for 20000 generations. Using the time base register on the PPE and the
decrementer register on one SPE, we were able to profile the sequential exe-
cution of the program. We obtained the following model parameters for PBPI:
THPU = 1.3s, TAPU = 370s, g = 0.8s and CAPU = 1.72s.

Figure 6 (a),(b), compares modeled and actual execution times for PBPI,
when PBPI only exploits one-dimensional PPE (HPU) parallelism in which each
PPE thread uses one SPE for off-loading. We execute the code with up to 16
MPI processes, which off-load code to up to 16 SPEs on two Cell BEs. Referring
to Equation 11, we set p = 1 and vary the value of m from 1 to 16. The X-axis
shows the number of processes running on the PPE (i.e. HPU parallelism), and
the Y-axis shows the modeled and measured execution times. The maximum
prediction error of MMGP is 5%. The arithmetic mean of the error is 2.3% and
the standard deviation is 1.4. The largest gap between MMGP prediction and
the real execution time occurs when the number of processes is larger than 10,
(Figure 6 (b)). The reason is contention caused by context switching and MPI
communication, when a large number of processes is multiplexed on 2 PPEs.
Nevertheless, the maximum prediction error even in this case is close to 5%.

Figure 6 (c),(d), illustrates modeled and actual execution times when PBPI
uses one dimension of SPE (APU) parallelism. Referring to Equation 11, we set
m = 1 and vary p from 1 to 16. MMGP remains accurate, the mean prediction
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(a) (b) (c) (d)

Fig. 6. MMGP predictions and actual execution times of PBPI, when the code uses
one dimension of PPE-HPU, ((a), (b)), and SPE-APU ((c), (d)) parallelism

error is 4.1% and the standard deviation is 3.2. The maximum prediction er-
ror in this case is 10%. We measured the execution time necessary for solving
Equation 11 for T (m, p) to be 0.4μs. The overhead of the model is therefore
negligible.

4.4 PBPI with Two Dimensions of Parallelism

Figure 7 shows the modeled and actual execution times of PBPI for all feasible
combinations of two-dimensional parallelism under the constraint that the code
does not use more than 16 SPEs, i.e. the maximum number of SPEs on the
experimental platform. MMGP’s mean prediction error is 3.2%, the standard
deviation of the error is 2.6 and the maximum prediction error is 10%. The
important observation in these results is that MMGP matches the experimental
outcome in terms of the degrees of PPE and SPE parallelism to use in PBPI
for maximizing performance. In a real program development scenario, MMGP
would point the programmer in the direction of using two layers of parallelism
with a balanced allocation of PPE contexts and SPEs between the two layers.

In principle, if the difference between the optimal and nearly optimal con-
figurations of parallelism are within the margin of error of MMGP, MMGP
may not predict the optimal configuration accurately. In the applications we
tested, MMGP never mispredicts the optimal configuration. We also anticipate
that due to high accuracy, potential MMGP mispredictions should generally
lead to configurations that perform marginally lower than the actual optimal
configuration.

4.5 RAxML Outline

RAxML uses an embarrassingly parallel master-worker algorithm, implemented
with MPI. In RAxML, workers perform two tasks: (i) calculation of multiple in-
ferences on the initial alignment in order to determine the best known Maximum
Likelihood tree, and (ii) bootstrap analyses to determine how well supported are
some parts of the Maximum Likelihood tree. From a computational point of view,
inferences and bootstraps are identical. We use an optimized port of RAxML on
Cell, described in further detail in [5].
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Fig. 7. MMGP predictions and actual execution times of PBPI, when the code uses
two dimensions of SPE (APU) and PPE (HPU) parallelism. Performance is optimized
with a layer of 4-way PPE parallelism and a nested layer of 4-way SPE parallelism.

4.6 RAxML with Two Dimensions of Parallelism

We compare the execution time of RAxML to the time modeled by MMGP, us-
ing a data set that contains 10 organisms, each represented by a DNA sequence
of 50,000 nucleotides. We set RAxML to perform a total of 16 bootstraps us-
ing different parallel configurations. The MMGP parameters for RAxML, ob-
tained from profiling a sequential run of the code are THPU = 8.8s, TAPU =
118s, CAPU = 157s. The values of other MMGP parameters are negligible com-
pared to TAPU , THPU , and CAPU , therefore we disregard them for RAxML. We
observe that a large portion of the off-loaded RAxML code cannot be parallelized
across SPEs (CAPU - 57% of the total SPE time). Due to this limitation, RAxML
does not scale with one-dimensional parallel configurations that use more than
8 SPEs. We omit the results comparing MMGP and measured time in RAxML
with one dimension of parallelism due to space limitations. MMGP remains
highly accurate when one dimension of parallelism is exploited in RAxML, with
mean error rates of 3.4% for configurations with only PPE parallelism and 2%
for configurations with only SPE parallelism.

Figure 8 shows the actual and modeled execution times in RAxML, when
the code exposes two dimensions of parallelism to the system. Regardless of
execution time prediction accuracy, MMGP is able to pin-point the optimal par-
allelization model thanks to the low prediction error. Performance is optimized
in the case of RAxML with task-level parallelization and no further data-parallel
decomposition of tasks between SPEs. There is very little opportunity for scal-
able data-level parallelization in RAxML. MMGP remains very accurate, with
mean execution time prediction error of 2.8%, standard deviation of 1.9, and
maximum prediction error of 7%.

Although the two codes tested are similar in their computational objective,
their optimal parallelization model is at the opposite ends of the design spectrum.
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Fig. 8. MMGP predictions and actual execution times of RAxML, when the code uses
two dimensions of SPE (APU) and PPE (HPU) parallelism. Performance is optimized
by oversubscribing the PPE and maximizing task-level parallelism.

MMGP accurately reflects this disparity, using a small number of parameters and
rapid prediction of execution times across a large number of feasible program
configurations.

5 Related Work

Traditional parallel programming models, such as BSP [13], LogP [6], and de-
rived models [14,15] developed to respond to changes in the relative impact of
architectural components on the performance of parallel systems, are based on
a minimal set of parameters, to capture the impact of communication over-
head on computation running across a homogeneous collection of interconnected
processors. MMGP borrows elements from LogP and its derivatives, to esti-
mate performance of parallel computations on heterogeneous parallel systems
with multiple dimensions of parallelism implemented in hardware. A variation
of LogP, HLogP [7], considers heterogeneous clusters with variability in the com-
putational power and interconnection network latencies and bandwidths between
the nodes. Although HLogP is applicable to heterogeneous multi-core architec-
tures, it does not consider nested parallelism. It should be noted that although
MMGP has been evaluated on architectures with heterogeneous processors, it
can also support architectures with heterogeneity in their communication sub-
strates.

Several parallel programming models have been developed to support nested
parallelism, including extensions of common parallel programming libraries such
as MPI and OpenMP to support nested parallel constructs [16,17]. Prior work
on languages and libraries for nested parallelism based on MPI and OpenMP is
largely based on empirical observations on the relative speed of data communi-
cation via cache-coherent shared memory, versus communication with message
passing through switching networks. Our work attempts to formalize these ob-
servations into a model which seeks optimal work allocation between layers of
parallelism in the application and optimal mapping of these layers to heteroge-
neous parallel execution hardware.
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Sharapov et. al [18] use a combination of queuing theory and cycle-accurate
simulation of processors and interconnection networks, to predict the perfor-
mance of hybrid parallel codes written in MPI/OpenMP on ccNUMA architec-
tures. MMGP uses a simpler model, designed to estimate scalability along more
than one dimensions of parallelism on heterogeneous parallel architectures.

6 Conclusions

The introduction of accelerator-based parallel architectures complicates the
problem of mapping algorithms to systems, since parallelism can no longer be
considered as a one-dimensional abstraction of processors and memory. We pre-
sented a new model of multi-dimensional parallel computation, MMGP, which
we introduced to relieve users from the arduous task of mapping parallelism to
accelerator-based architectures. We have demonstrated that the model is fairly
accurate, albeit simple, and that it is extensible and easy to specialize for a given
architecture. We envision three uses of MMGP: i) As a rapid prototyping tool
for porting algorithms to accelerator-based architectures. ii) As a compiler tool
for assisting compilers in deriving efficient mappings of programs to accelerator-
based architectures automatically. iii) As a runtime tool for dynamic control of
parallelism in applications. Extensions of MMGP which we will explore in future
research include accurate modeling of non-overlapped communication and mem-
ory accesses, accurate modeling of SIMD and instruction-level parallelism within
accelerators, integration of the model with runtime performance prediction and
optimization techniques, and application of the model to emerging accelerator-
based parallel systems.
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Abstract. A polymorphic implementation of the DES algorithm is presented.
The polymorphic approach allows for a very fast integration of the DES hardware
in existing software implementations, significantly reducing the time to marked
and the development costs associated with hardware integration. The tradeoff be-
tween implementing the DES SBOXs in LUT or in BRAMs is the focus of the
study presented in this paper. The FPGA implementation results suggest LUT
reduction in the order of 100 slices (approximately 37%) for the full DES core,
at the expense of 4 embedded memory blocks (BRAM). Even with this delay
increase, the usage of BRAMs allows for an improvement of the Throughput
per Slice ratio of 20%. The proposed computational structure has been imple-
mented on a Xilinx VIRTEX II Pro (XC2VP30) prototyping device, requiring
approximately 2% of the device resources. Experimental results, at an operating
frequency of 100 MHz, suggest for the proposed polymorphic implementation a
throughput of 400 Mbit/s for DES and 133 for 3DES. When compared with the
software implementation of the DES algorithm, a speed up of 200 times can be
archived for the kernel computation.

1 Introduction

In present days, most of the communication systems requires secure data transfer in
order to maintain the privacy of the transmitted message; this message can be a simple
email or a billion euro transaction between banks. In order to maintain the security of
the communication channels, several encryption standards and algorithms exist, such
as public key ciphers, symmetric ciphers and hash functions. For ciphering the bulk
of data, symmetrical ciphering algorithms are used. Even though new emerging algo-
rithms for symmetrical encryption have been appearing, the Data Encryption Standard
(DES) [1] is still widely used, especially in banking application and monetary transac-
tions, due to backward compatibility and legacy issues. In 1998 [2] the DES algorithm
and its 54 bit key, have been deemed unsafe and replace by 3DES, which basically con-
sists in performing the DES computation three times with three different keys, having
a 112 bits equivalent key. With the increase of embedded application requiring DES
(and 3DES), like RFID and bank cards, efficient hardware implementations of DES are
demanded. In this paper a polymorphic implementation of the DES algorithm is pro-
posed. This approach allows the hardware implemented DES core to be invoked in the

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 55–65, 2008.
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same manner as has the equivalent software function, making its usage transparent to
the software developer. This allows for a lower development cost and a much faster time
to market. This paper also studies the advantages and disadvantages of using embedded
memories for the implementation of the DES S-BOXs.

The FPGA implementation results suggest that a significant LUT reduction in the
order of 100 slices (approximately 37%) for the full DES core, at the expense of 4 em-
bedded memory blocks (BRAM). Even with this delay increase, the usage of BRAMs
allows for an improvement of the Throughput per Slice ratio of 20%.

Experimental results for the polymorphic implementation, obtained from a prototype
developed using a Xilinx VIRTEX II pro 30 prototyping FPGA, suggest:

– Speedups up to 200 times compared to the pure software implementations;
– Minimal software integration costs;
– Throughput of 400 Mbit/s for DES and 133 Mbits for 3DES, with 2% device usage.

The paper is organized as follows: Section 2 presents an overview on the DES
algorithm. The implemented hardware structure is presented in section 3. Section 4
describes the proposed polymorphic DES organization and its usage in existing ap-
plications. Section 5 presents the obtained experimental results and compares them to
related DES state-of-the-art. Section 6 concludes this paper with some final remarks.

2 DES Computation

Nowadays, the field of cryptography is growing up very intensively and many others
algorithms are presented to meet the requirements of modern electronic systems. Since
the time when the DES algorithm was introduce (in 1976), there are many devices
and systems in which this algorithm is the bases into their security level. The high
performance solutions are based on ASIC technologies and the reconfigurable ones are
based on FPGA technologies. In both of the cases for each new solution is necessary to
keep the compatibility with devices which are already available on the market. In our
paper, an implementation of DES algorithm as a part of dynamic reconfigurable system
based on FPGA technology is presented.

In DES, 64 bit data blocks are encrypted using a 54 bit Key (obtained from an input
key with 64 bits). The intermediate ciphered values are processed as two 32-bit words
(Li and Ri), which are manipulated in 16 identical rounds as depicted in Figure 1.
This manipulation consists of substitution, permutation, and bitwise XOR operation,
over the 64-bit data block. The DES algorithm also has an Initial bit Permutation (IP)
at the beginning of a block ciphering. To conclude the ciphering of a block, a final
permutation is performed, which corresponds to the inverse of the initial permutation
(IP−1). The main computation is performed in 16 round designated by Feistel network,
named after cryptographer Horst Feistel. In each round a different sub-key is used,
generated form the main key expansion. The round computation or Feistel network is
depicted in Figure 2.

The Feistel network is composed be the 3 main operation in symmetrical ciphering,
namely key addition, confusion, and diffusion [3]. The first half of the round block is
expanded from 32 to 48 bits and added to the 48-bits of the current sub-key. While the
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Fig. 1. DES computation

data expansion can be hardwired in the computation logic, the key addition requires
XOR gates for the computation. The Key addition operation is followed by the con-
fusion operation, performed by SBOXs. In this operation the value resulting from the
addition is grouped in 8 blocks of 6 bits each. Each 6 bits are replaced by a different set
of 8 groups of 4 bits, resulting in 32 different bits. The diffusion operation is performed
by a final permutation. After the 16 rounds have been computed, a final permutation
(IP−1) is performed over the 64 bit data block.

The DES computational structure has the advantage that the decryption computa-
tion is identical to the encryption computation, only requiring the reversal of the key
schedule.

3 Proposed DES Structure

As depicted in Figures 1 and 2 the core computation of DES can be summed up to XOR
operations, the SBOXs, permutations and word expansions. Since the permutations and
expansions can be performed by routing, only the XORs, SBOXs, and some glue logic
require computational logic. In order to create a compact DES computational core, a
fully folded design has been implemented. In each clock cycle one round of the DES 16
rounds are computed, thus 16 clock cycles are required to compute a 64-bit data block.
The used structure is presented in Figure 3. In this folded design some additional logic
is required for multiplexing and additional round control.
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Given that, this DES core is to be used on a FPGA device, two major computa-
tional structures can chosen for the implementation of the SBOXs. The first and most
commonly used is the implementation of the SBOX using the FPGA Look Up Tables
(LUT). In this approach distributed memory blocks are created for each of the 32 bits of
the word resulting from the SBOXs. Since most of the used Xilinx FPGAs have 4 input
LUTs, the 6 bit SBOX requires at least 2 LUTs for each output bit. From this, it can be
estimated that at least 64 LUT are required having a critical path of at least 2 LUTs, as
depicted in Figure 4.

Taking into account that current FPGAs have embedded memory blocks (BRAMs),
an alternative implementation of the SBOXs can be used. These BRAMs can be used as
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ROM blocks, to implement a full SBOX table. Since these BRAMs have output ports
with at leat 4 bits, one BRAM can be used to replace at leat 2×4 = 8 LUTs. Moreover,
modern FPGAs have embedded dual port BRAMs with more that (2×26=) 128 words,
thus, two SBOXs can be computed in each BRAM, as depicted in Figure 5. With this,
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AddressAddress

DataData

6
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Fig. 5. BRAM based SBOXs

only 4 BRAMs need to be used, instead of at least 64 LUTs. Due to the fact that existing
BRAMs have registered output ports the round register must be located at the end of
the SBOXs, limiting the options of the designer where to place the round registers.

In the DES algorithm the encryption and decryption of data differs only in the order
in which the key expansion is performed. The key expansion consists of fixed permu-
tations and rotate operations. While the permutation operations can be performed by
routing, the rotation requires dedicated hardware. The rotation can be of 1 or 2 posi-
tions and, depending on the operation (encryption or decryption), to the left or to the
right. The implemented structure is depicted in Figure 6.

In order to simplify the computational structure and the key expansion, only the DES
algorithm is performed in hardware. To compute the 3DES algorithm, the DES hard-
ware is called 3 times with the 3 different keys, thus performing the 3DES calculation.

4 Polymorphic Implementation

In order to efficiently use the DES core with a low development cost to the programmer,
the MOLEN [4,5] computational paradigm is used. The MOLEN paradigm is based on
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the coprocessor architectural paradigm, allowing the usage of reconfigurable custom
designed hardware units. In this computational approach, the non critical part of the
software code is executed on a General Purpose Processor (GPP), while the main DES
algorithm, is executed on the Custom Computing Unit (CCU). The DES core is seen by
the programmer in the same manner as a software implemented function. The decision
where the function is executed is made at compile time. At microarchitectural level the
arbiter, depicted in Figure 7, redirects each instruction either to the GPP (a PowerPC in
our case) or to the cryptographic units.
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Fig. 6. DES key expansion
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In a software function, the parameter passing is done through the stack. In the Molen
processor, when a hardware function is invoked the parameters are passed through a
dedicated register bank, designated by eXchange REGisters (XREG).

Given that the dedicated computational units are also connected to the main data
memory, only initialization parameters are passed to the DES computational unit via
the XREG. These parameter are the private key, memory pointers to the data to be
ciphered, and the operation modes, e.g. encrypt or decrypt. The data to be processed is
directly retrieved and send to the main data memory, via a shared memory mechanism.

In order to illustrate the data flow, the encryption operation for a 64 bit data block
is described. When the DES cipher function is called, a few software instructions are
executed, namely instructions that move the function parameters from the GPP internal
registers to the XREG, followed by an execute instruction. When an execute instruction
is detected by the arbiter, the later starts addressing the microcode memory, giving
control of the data memory to the DES core, and signals it to start the computation via
the start signal depicted in Figure 7.

Once the DES core receives the start signal, it starts retrieving the values from the
XREG. The first value read is the operation mode, which indicates which operation will
be performed. Continuously, the start and end memory addresses for the data to cipher
are retrieved from the XREG. While the first data block is read from the memory, the key
is read from the XREG and stored in the DES internal registers. After this initialization
phase, the DES core enters a loop where, while the data is being ciphered, the next 64-bit
data block is read from the memory. In the end of each loop, the ciphered data is written
back into the data memory. When the current memory address coincides with the data
end address, the computation loop is broken and the stop signal is sent to the arbiter.
Upon receiving this stop signal, the arbiter returns the memory control to the GPP.

To indicate which function performs the DES encryption computed in hardware, a
pragma annotation is used in the C code, as depicted in Figure 8.

#pragma DES
DES (key, &data[0], &data[end], mode){

\∗ implemented in HW ∗\
}

Fig. 8. Usage of the pragma notation

This pragma annotation is recognized by the compiler which automatically generates
the required instructions sequence [4]. This pragma addition and recompilation are the
only operation required to use the hardware implemented DES, instead of the software
implemented version. With this mechanism, any application using DES or 3DES can be
accelerated by the DES core, with a reduced time market and a very low development cost.

5 Performance Analysis

To evaluate the advantages and disadvantages of using BRAMs on DES computa-
tional structures and the polymorphic DES implementation, a Xilinx VIRTEX II Pro 30
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prototyping FPGA device has been used. The FPGAs embedded PowerPC is used as the
core GPP [4].The PowerPC is running at 300 MHz, with a main data memory running
at 100 MHz. The DES co-processor runs at the same frequency as the data memory,
100 MHz.

In Table 1, the two implemented DES computational structures, with and without
BRAMs, are compared. In this table related DES stand-alone art is also presented. Note
that these figures are for the DES kernel computation only.

Table 1. Stand-alone DES performances

Our-BRAM Our-LUT Wee [6] Rouv [7] Our-BRAM Our-LUT CAST [8] Our-BRAM Our-LUT

Device V1000E V1000E V2-4 V2-5 V2-5 V2-5 V2P2-7 V2P30-7 V2P30-7
Freq. (MHz) 81 138 179 274 152 202 261 218 287
Slices 174 277 382 189 175 278 255 175 278
BRAMs 4 0 0 0 4 0 0 4 0
Thrput (Mb/s) 354 551 716 974 609 808 1044 872 1148
Latency 16 16 16 18 16 16 16 16 16
TP/S 2.03 1.99 1.87 5.15 3.48 2.91 4.09 4.98 4.13

From the implementation results of Our DES core with and without BRAMs on the
VIRTEX-2 and VIRTEX-2 Pro FPGA technologies it can be concluded that a significant
reduction on the required slices (37%), at the expense of 4 BRAMs, can be achieved.
However, as a consequence, the critical path increases about 32%. This delay increase
is due to the fact that a BRAM has a critical path equivalent to about 3 Look Up Tables
(LUT), and the critical path of a LUT implemented SBOX is of 2 LUTs. Nonetheless,
an improvement of 20% to the Throughput per Slice (TP/S) efficiency metric can be
achieved. In these technologies and for the BRAM based structures, the slice occupation
(2%) is the same as the BRAM usage (2%), thus an adequate utilization of the available
resources in the device is achieved. In older technologies, where BRAMs are not so
fast, like the VIRTEX-E, the penalty on the delay is higher. In this case, practically no
improvement to the TP/S is achieved (only 2%).

When compared with related art, that use the unmodified DES algorithm structure,
the proposed core has an equivalent Throughput per Slice as the commercial core from
CAST, when compared with the proposed LUT based DES structure. The TP/S metric
improves to 22% when compared with the BRAM based DES structure. When com-
pared with [6] a TP/S metric improvement of 86% and 57% is achieved for the proposed
structure with and without BRAMs, respectively.

In [7], the authors propose a modification to the DES computational algorithm, which
allows for the efficient use of a pipeline computation, resulting in a very efficient com-
putational structure. This improvement comes at the expense of a higher latency and
a potentially lower resistance to side-channel attacks, since the same key is added at
two locations, instead of one [9, 10]. This algorithmic alteration also makes the usage
of side-channel defences more difficult [11, 12]. Nevertheless, when no side-channel
concerns exist, this structure is quite advantageous.
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Taking into account that, the computational block used to perform the SBOXs oper-
ation is exactly the same in both papers; the same tradeoff between LUTs and BRAMs
can still be applied to the design proposed in [7]. As a result, the 64 slices [7] required
for the SBOXs can be replaced by 4 BRAMs, further improving the Throughput per
Slice efficiency metric, as suggested by the results in Table 1. In the proposed usage of
the DES core, as a polymorphic processor, the operating frequency is constituted by the
memory not by the core itself. This means that the higher latency and pipeline depth
makes the proposed structure [7] less advantageous.

For the experimental results a VIRTEX-2 Pro FPGA on a Xilinx University Program
(XUPV2P) board. The comparative results for a pure software implementation and for
the polymorphic usage are presented in Table 2. This table also presents the speedup

Table 2. DES polymorphic performances

Hardware Software Kernel
Bits ThrPut ThrPut SpeedUp

64 89 Mbit/s 0.92 Mbit/s 97
128 145 Mbit/s 1.25 Mbit/s 116
4k 381 Mbit/s 1.92 Mbit/s 198
64k 399 Mbit/s 1.95 Mbit/s 205

achieved for the kernel computation of the DES algorithm. In these results, a difference
in the ciphering throughput can be seen, for different block sizes. This is due to the
initialization cost of the of DES CCU, which includes the loading of the key and the
transfer of the data addresses from the XREG to the DES core. This initialization over-
head becomes less significant as the amount of data to be ciphered increases, becoming
negligible for data blocks above 4 kbits. A speedup of 200x can be attained, achieving
a ciphering throughput of 399 Mbit/s, working at the memory frequency of 100 Mbit/s.

Table 3 presents the figures for the proposed polymorphic DES core and for related
art, using DES hardware acceleration. It can be seen that the proposed DES processor
is able to outperform the related art in terms of throughput by 30% with less than 40%
FPGA usage. This results in a Throughput per Slice improvement of 117%. Another
advantage of this polymorphic computational approach is the capability to easily inte-
grate existing software application in this embedded system, since existing applications
just have to be recompiled, in order to used the dedicated DES hardware, as depicted in
Figure 8.

Table 3. DES processors

Chodo [13] Our-LUT Our-BRAM

Device V1000 V1000E V2P30-7
Freq. (MHz) 57 100 100
FPGA usage 5% 3% 2%
DES (Mbit/s) 306 399 399
3DES (Mbit/s) 102 133 133
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6 Conclusions

In this paper, a hybrid hardware/software implementation of the DES algorithm was
presented, using a polymorphic computational paradigm. The tradeoffs of using
BRAMs to implement the DES SBOXs are also studied in this paper. Implementation
results suggest that the Throughput per Slice metric can be improved by 20% with the
use of BRAMs. The use of the BRAM implies a decrease on the maximum frequency,
compensated by a significant reduction on amount of required slices. Implementation
results suggest that for the complete DES core, the employed polymorphic paradigm
and the tightly coupled organization between the General Purpose Processor (GPP) and
the dedicated DES core, allow for a short development cycle and substantial perfor-
mance improvement. Given that the DES core can directly access the main data memory
and the usage of the exchange register to transfer the initialization parameters, the hard-
ware implemented DES algorithm can be invoked in the same manner as the software
implemented function. The parameter passing via the exchange register is performed by
the compiler, thus making the usage of the DES core transparent for the programmer.
Experimental results of the proposed processor on a VIRTEX II Pro FPGA, indicate
that for data blocks of larger that 4 kbits a speedup of 200x for the DES algorithm can
be attained, achieving a throughput of 400 Mbit/s for DES and 133 Mbit/s for 3DES.
This performance improvement is achieved with a significantly low cost in terms of
reconfigurable area, approximately 2% of the used device (328 slices and 4 BRAMS),
and with a minimal development cost, since the integration of the dedicated hardware
is performed by the compiler. In conclusion, with this polymorphic implementation of
the DES algorithm, existing software application that demand high ciphering rates can
be embedded with DES hardware implementations with a low development cost and
without large reconfigurable resources.

Evaluation Prototype

An evaluation prototype for the XUP prototyping board of the hybrid DES processor is
available for download at http://ce.et.tudelft.nl/MOLEN/applications/DES
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Abstract. Reconfigurable architectures provide power efficiency, flexibility and
high performance for next generation embedded multimedia devices. ADRES,
the IMEC Coarse-Grained Reconfigurable Array architecture and its compiler
DRESC enable the design of reconfigurable 2D array processors with arbitrary
functional units, register file organizations and interconnection topologies. This
creates an enormous design space making it difficult to find optimized archi-
tectures. Therefore, architectural explorations aiming at energy and performance
trade-offs become a major effort. In this paper we investigate the influence of reg-
ister file partitions, register file sizes and the interconnection topology of ADRES.
We analyze power, performance and energy delay trade-offs using IDCT and FFT
as benchmarks while targeting 90nm technology. We also explore quantitatively
the influences of several hierarchical optimizations for power by applying spe-
cific hardware techniques, i.e. clock gating and operand isolation. As a result, we
propose an enhanced architecture instantiation that improves performance by 60
- 70% and reduces energy by 50%.

1 Introduction

Power and performance requirements for next generation multi-media mobile devices
are becoming more relevant. The search for high performance, low power solutions
focuses on novel architectures that provide multi-program execution with minimum
non-recurring engineering costs and short time-to-market. IMEC’s coarse-grained re-
configurable architecture (CGRA) called Architecture for Dynamically Reconfigurable
Embedded Systems (ADRES) [1] is expected to deliver superior energy eficiency of
60MOPS/mW based on 90nm technology.

Several CGRAs are proposed in the past and applied in a variety of fields. The
KressArray [2] has a flexible architecture and is ideal for pure dataflow organizations.
SiliconHive [3] provides an automated flow to create reconfigurable architectures. Their
architectures can switch between standard DSP mode and pure dataflow. The DSP
mode fetches several instructions in parallel, which requires a wide program memory.
In pure dataflow mode these instructions are executed in a single cycle. PACT XPP [4]
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is a commercial reconfigurable architecture designed for multi-media and telecommu-
nication applications. The architecture is fixed to 64 ALUs, which means the kernel
mapping is constrained by these ALUs. MorphoSys [5] is a typical CGRA consisting
of 8x8 basic units split-up into 4 tiles of 4x4 reconfigurable cells. Each cell in a tile
is connected to all cells in the same row and column. There are also connections be-
tween the different tiles. The array speeds up the kernel, while a TinyRISC is utilized
for the control section of the code. A more extensive overview of CGRAs is provided
by Hartenstein in [6].

The ADRES template enables the designer to configure the architecture based on
a variable number of functional units, register files and interconnections allowing ad-
vanced power and performance optimizations. Finding the optimal architecture for the
customizable processor is not trivial task as there is a huge space of possible design
points. Architectural explorations are mandatory to empirically find the architecture
that best balances power, performance and cost characteristics.

Previous architectural explorations of ADRES were performed [7], [8] to find an op-
timal interconnection scheme for a good performance and power ratio. The architecture
template obtained in [8] will function as the starting point of this work. This base tem-
plate consists of a 4x4 array of FUs and local data register files. All these components
are vertically, horizontally and diagonally interconnected.

The architecture in [8] showed the importance of not only interconnections, but also
the register files of the coarse-grained array (CGA) of ADRES as these have a signif-
icant influence on power and performance. Kwok et al. [9] performed initial analysis
of architectural explorations for the register file (RF) sizes and under utilization of the
CGA, which motivated the drastic RF size reduction. As the DRESC CGA compiler
and ADRES architectural template evolved the CGA utilization improved considerably
making Kwok’s results outdated for the latest compiler version (DRESC2.x).

This paper elaborates on the results of [8] on the interconnect and component level
optimizations as the data sharing among functional units and register files can be im-
proved significantly. We show the relevance of explorations to derive an efficient design
for two widely used wireless and multi-media kernels (FFT and IDCT). We also show
the fallacy that a system with distributed, fully interconnected register files is the best
in terms of energy-delay. Our ADRES architectural proposal is modified by decreasing
the sizes of the local register files.

The main contributions of this paper are:

– Careful architectural exploration of the register file distribution, interconnection
topology and register file sizes for the CGRA;

– Empirical study of power, performance and energy-delay of all proposed interme-
diate and the final architectures;

– Quantitative evaluation of specific optimizations such as clock gating, operand iso-
lation and pipelining;

– Determination of an energy optimized architecture for IDCT and FFT;
– Array size modifications of the proposed architecture for energy-delay analysis.

This paper is organized as follows. Section 2 briefly describes the ADRES architecture
and the programming model. Section 3 presents the utilized tool flow during the explo-
rations. Three different optimizations are described and benchmarked in Section 4 to
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select the final architecture based on power and energy-delay results. Section 5 presents
the intermediate and final implemented results of the created architecture instances. The
conclusions section finalizes this paper.

2 ADRES Base Architecture and Programming Model

The ADRES architecture based on its template [1] is a tightly-coupled architecture that
can operate in either VLIW or CGA mode. Figure 1 shows the selected 4x4 ADRES
base architecture of [8] including data and instruction memories. When the architec-
ture is operating in VLIW mode the performance is improved due to instruction level
parallelism. In CGA mode performance is improved by parallelizing loops on the array
(loop level parallelism). ADRES based systems are programmed in ANSI-C language.
Any existing ANSI-C program can be modified to suit the ADRESS CGA by modifying
the if-conversions and removing all nested loops as described in [1]. No additional in-
structions in the source code are needed for the compiler to map the loops to the CGA.
Code that could not be mapped on the array is executed on the VLIW relying only on
instruction level parallelism.
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Fig. 1. ADRES Instance example

The VLIW control unit (CU) controls the program counter (PC) and is responsible
for fetching instructions from the instruction cache. The switch between VLIW and
CGA modes is directed by the same VLIW CU by fetching a CGA instruction in VLIW
mode. The configuration memories (CM) are addressed by a control unit and provide
instructions and routing data for the entire array during CGA operation.

Communication between the two modes goes via the multi-port global Data Register
File (DRF) or data memory (DMEM). The VLIW functional units (FU) communicate



Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 69

through the global DRF with eachother. The CGA FUs communicate through the global
DRF, local data and predicate register files (PRF) and the dedicated interconnections.
The predicate register files or busses handle branches, loop prologue and epilogue for
proper control flow.

The VLIW section of the base architecture has a four instructions issue width, while
the CGA section has an issue width of 4 by 3 (12) instructions. The template consists of
mesh, mesh plus and diagonal interconnections [8] between FUs and local DRFs. This
resulted in good routing capabilities in the array, but can be improved as researched in
this paper.

3 Tool Flow

The tool flow used in this architecture exploration study is the same as used in [8].
It provides the necessary results in terms of performance, power and energy usage. A
simplified representation of this flow is depicted in Figure 2.

1) Compile and Assemble

ANSI-C files

XML
Architecture

Files

Synthesize ADRES 
Architecture with
Synopsys tools

Calculate Power

Toggle File

Performance Results Physical CharacteristicsPower Results

2) Synthesize3) Simulate

= IMEC Tools

TSMC Libraries
Binary files Create Esterel

Simulator

C-code
transformation,

IMPACT,
DRESC &
Assembly

Gate level 
Design

= External Tools

Fig. 2. Simple representation of Tool Flow

All three steps in the figure (Compile and Assemble, Synthesize and Simulate) use
the same ADRES XML architecture file as input. The first step, Compile and Assemble,
maps ANSI-C code on either the CGA or the VLIW architecture views. This step gener-
ates the program binary files needed for the HDL simulation stage, but also provides the
number of instructions and cycles. The latter are used to calculate performance using
high-level simulations of the applications on a given architectural instance.

The second step, Synthesize, translates the XML file into a top-level VHDL file and
synthesizes the architecture using 90nm TSMC libraries. Physical characteristics are
obtained from the gate-level architecture with 90nm, regular-Vt (1V, 25◦C) general pur-
pose libraries. The final architecture is also placed and routed to obtain the circuit layout.

The third step, Simulation, utilizes either the enhanced Esterel [10] or the ModelSim
v6.0a simulator for HDL verification and analysis. The Esterel simulator provides faster
results compared to ModelSim without significant loss of accuracy [8]. Annotating the
captured switching activity of the HDL simulations onto the gate-level design results in
power figures.
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4 Architectural Explorations

The architecture explorations in the following sections start from the base architecture
presented in Figure 1 that was analyzed for energy efficiency in [8]. The power dis-
tribution of the base architecture for IDCT are depicted in Figure 3. The components
with the highest consumption (primary targets for improvement) are the configuration
memories (CMs: 37.22%), the FUs (19.94%) and the DRFs (14.80%) of the CGA.

drf_vliw
10.07%

prf_vliw
0.31%

fu_vliw
6.64%
cu_vliw
0.41%

drf_cga
14.80%

prf_cga
0.44% fu_cga

19.94%

Intercon. Logic
5.21%

Intercon. REG 
2.66%

Intercon. MUX 
2.30%

CM
37.22%

Fig. 3. Power distribution of our base architecture for IDCT: 80.45mW

We optimize these three components using the following methods:

CM: Create an array with less configuration bits by reducing the number of architec-
ture components or by using simpler interconnections;

FU CGA: Improve the FU design from non-pipelined to pipelined (VHDL modifica-
tions) and optimize the routing of the CGA array (XML architecture description
update);

DRF CGA: Reduce the register file sizes, apply clock gating and use register file
sharing.

Sharing data between the FUs and the local DRFs and PRFs is important for the
power consumption and performance of the architecture as these influence the CMs,
FUs and the local DRFs in power and performance. Therefore we will focus the ex-
plorations on routing and the register files. We only utilize IDCT and FFT kernels for
architecture explorations due to the fact that simulating complete applications such as
MPEG2 would result in prohibitively long simulation times. We will perform the fol-
lowing experiments for the explorations:

Local DRF distribution: Determine the influences of the RFs in the array by explor-
ing the distribution of the local data register files;

Interconnection Topology: Determine the influence of additional interconnections.
More interconnections improve routing, but increases the power consumption and
vice-versa;
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Register File Size Reduction: Determine what is the minimum size of the local DRFs
and PRFs. This results in local register file size optimally fitting the array increasing
the performance vs. power ratio.

Our exploration and comparison starts from the result architecture obtained in [8]
and shown in Figure 1. All explored architectures have a CGA dimension of 4x4, 32-
bit data bus and are non-pipelined. Pipelining of the FUs is of little relevance for our
study as the performance vs. power ratio remains constant. However, pipelining will be
applied to the selected architecture in Section 5 and analyzed with different array sizes.
Furthermore, the VLIW DRF and PRF have 64 words of which 14 are rotating for the
DRF and 32 for the PRF. The local DRFs and PRFs have 16 words created as rotating
register files. The configuration memories have 128 words and vary in width depending
on the CGA organization.

4.1 Distributing Local Data Register Files

This section investigates the influence of the local DRFs and PRFs on power and perfor-
mance for the array. This study is based on a fixed mesh plus interconnection topology
between the FUs with vertical and horizontal connections [8]. Among the FUs we ex-
plore variable register file distributions proposed in [11] which are also depicted in
Figure 4. There are eight FUs with multiplication and four FUs with memory LD/ST
capabilities.
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Fig. 4. Distribution of the Local DRFs

The three different architectures have a local PRF for each FU that can be replaced by
predicated busses (noted with suffix pd in Table 1). The capability of storing and later
processing is not possible with the busses that is a potential performance bottleneck.

The simplest architecture mesh plus does not have local DRFs and completely rely
on the available data busses for all data transfers. Only the first row of FUs is connected
to the global DRF. The architecture reg con shared xR yW shares its inputs and outputs
of the RFs to decrease the area of the RFs and share data more efficiently. For the shared
RF architecture we investigate the influence of the number of ports for the local RFs.
More precisely we simulated instances with 2, 4 and 8 read ports. The most complex
architecture reg con all has a DRF for each FU in the array and is similar to the one
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Table 1. Distributed DRFs Names

Original Renamed Original Renamed
4x4 mesh plus arch 1 4x4 mesh plus pred bus arch 1 pb
4x4 reg con shared 2R 1W arch 2 4x4 reg con shared 2R 1W pred bus arch 2 pb
4x4 reg con shared 4R 2W arch 3 4x4 reg con shared 4R 2W pred bus arch 3 pb
4x4 reg con shared 8R 4W arch 4 4x4 reg con shared 8R 4W pred bus arch 4 pb
4x4 reg con all arch 5 4x4 reg con all pred bus arch 5 pb
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depicted in Figure 1. The created architectures are noted in Table 1 and the names are
abbreviated for ease of explanation.

All results presented here and in Section 4.2 are placed together in Figures 5 and 7
- 10. The leakage results are depicted in Figure 5 and the power results at 100MHz of
IDCT and FFT are presented in Figures 7 and 8, respectively. The energy-delay results
are depicted in Figures 9 and 10. We will discuss the results presented here first.

Removing the local DRFs in the first two architectures (arch 1 and arch 1 pb) result
in a low energy consumption, but decreased performance as depicted in Figures 9 and
10. This indicates the DRFs are beneficial during CGA operation. Replacing the PRFs
with a bus increases energy consumption by (FFT: 10 - 46%, IDCT: 5 - 37%) except
for arch 5. This experiment shows that storing predicate results of previous operations
in local PRFs is essential for overall power consumption in cases with few local DRFs
or no DRF at all.

The experiment in this section showed that register file sharing creates additional
routing for the DRESC compiler that improves scheduling density of the array. Inter-
connection complexity is reduced requiring less configuration bits, hence decreasing the
size of the configuration memories. Replacing four RFs with only one reduced leakage
and IDCT/FFT power consumption of the local DRFs. Local RFs with 1 write and
2 read ports in arch 2 outperforms in terms of power and energy-delay the fully dis-
tributed RFs architecture arch 5 for both, FFT and IDCT, kernels.
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4.2 Interconnection Topology

This section explores the impact of additional interconnections on power and perfor-
mance. This enhancement has a fixed reg con all RF distribution similar to the base ar-
chitecture in [8]. The three different interconnection topologies are depicted in Figure 6.
The resources and LD/ST units are distributed in the same way as in Figure 4.
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FU FU FU FU

FU FU FU FU

FU FU FU FU

Mesh Mesh_plus Morphosys

Fig. 6. Interconnection Topologies

We apply the same methodology as in Section 4.1 by replacing the local PRFs with
busses. The different architectures explored are listed in Table 2 and their results are
merged with the results of Section 4.1 and depicted in Figures 5 to 10. Combining the
Mesh plus architecture with the reg con all base architecture in Figure 6 would result
in arch 5 in Table 1, hence it is omitted in Table 2. The Morphosys interconnection is
based on the Morphosys architecture [5] that fully interconnects the array in both row
and column directions. The final arch 8 architecture will be explained at the end of this
section.

By considering only the architectures noted in Table 2 we notice that additional in-
terconnections in the base architecture are beneficial for energy-delay [9]. This is espe-
cially noticeable with the Morphosys architecture (arch 7). Figures 7 and 8 show that
replacing the local PRFs by predicate busses decreases the overall power and energy
consumption. Although the architecture arch 5 is better than arch 7 pb in both power
and energy, the additional Morphosys connection would be useful for larger arrays e.g.
8x8 and more. Therefore, we selected the arch 7 pb as the best fit for IDCT and FFT.

When the results of Sections 4.1 and 4.2 are combined, the arch 8 architecture with
shared DRFs, Morphosys connections and local PRFs is created as depicted in Figure
11. The predicate busses are omitted as they showed not to improve power and per-
formance of the architecture with shared register files. Figure 9 and 10 show arch 2 is
energy and delay appropriately, however it lacks the Morphosys interconnection that

Table 2. Interconnection Topologies Names

Original Renamed Original Renamed
4x4 reg con all mesh arch 6 4x4 reg con all mesh pred bus arch 6 pb

4x4 reg con all morphosys arch 7 4x4 reg con all morphosys pred bus arch 7 pb

4x4 reg con shared 2R 1W morphosys arch 8
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is beneficial for larger arrays. Table 3 notes the improvements of arch 8 over the base
architecture in Figure 1. The results clearly show an improvement in performance (MIP-
S/mW) of 14 - 16%. Power consumption was decreased by 22%, however, energy im-
proved only by 1.6% as additional execution cycles are required for the applications due
to the reduced local DRFs and PRFs sizes. Minimizing the number of local DRFs has
a beneficial effect on area resulting in 14.4% reduce. We select the arch 8 architecture
for further optimizations and explorations.

4.3 Register File Size Modification

In this section we evaluate the selected architecture arch 8 of Section 4.2 with variable
local DRF and PRF sizes to improve power while maintaining performance of the ar-
chitecture for kernels considered here. The global DRF and PRF can not modified and
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Fig. 10. FFT Energy-Delay @ 100MHz

Table 3. Base vs. arch 8 for IDCT & FFT @ 100MHz

MIPS/mW mW/MHz Power Energy Area
Benchmark (mW) (uJ) mm2

IDCT
base 17.51 0.81 80.45 37.72 1.59

arch 8 20.00 0.63 62.68 37.46 1.36
Improvement 14.22% 22% 22% 0.6% 14.4%
FFT

base 9.40 0.72 73.28 0.62
arch 8 10.95 0.57 57.05 0.61

Improvement 16.5% 20.8% 22.1% 1.6%
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fixed at 64 words. The global DRF has 8 read and 4 write ports, which are 32-bits wide.
The global PRF has 4 read and write ports each 1-bit wide.

The results in Table 4 show that 4 registers provide the least amount of instructions
and cycles with an optimal instructions per cycle (IPC) for an 4x4 array. The registers
that are not used will be clock gated reducing the negative impact on power. Interest-
ing to note is the decrease of IPC with increasing RF sizes. This was unexpected as
IPC usually saturates with increasing RF sizes. Nevertheless, our tests showed that the
scheduler of DRESC2.x improved over time [9] as the IPC increased with better usage
of the local DRFs, but the number of utilized registers is still relatively low.

VLIW DRF

Reg_con_shared_2R_1W_morphosys

RF

RF

RF

RF

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

Fig. 11. Proposed ADRES archi-
tecture with shared RFs

Table 4. Reducing Register File Size arch 8

Local Register File Size
Application 2 4 8 16
IDCT
Instructions 974632 923940 923980 923960

Cycles 62924 59755 59762 59757
IPC 9.69 10.21 10.21 10.21

FFT
Instructions 11364 10532 11040 11060

Cycles 1087 1035 1063 1065
IPC 2.48 2.73 2.57 2.58

5 Final Results

The optimizations in Sections 4.1 till 4.3 led to arch 8 architecture with shared local
DRFs, Morphosys interconnections and reduced RF sizes. The architecture discussed
is a non-pipelined version with no further optimizations of the architecture and data
path. We apply three additional optimizations for the architecture and data path in this
section: clock gating, operand isolation and pipelining. Clock gating targets the regis-
ter files by reducing their switching activity. This feature is implemented automatically
by Synopsys Power Compiler. Empirical results show a power reduction of the reg-
ister file between 50 - 80%. A pipelined version of the same architecture shows 20 -
25% power improvement in overall. Operand Isolation targets the data path of a FU
reducing switching activity of unused components. It is implemented manually as the
automated version built in the design tools used only reduced the power by 1%. Our
manual implementation using OR-based isolation [12] reduced power by 30% for a
single FU and 30 - 40% for the overall pipelined system. Pipelining increases perfor-
mance significantly by creating shorter critical paths and provides higher throughput.
Pipelining, which is implemented by hand, has a disadvantage that power increases lin-
early when increasing the frequency unless clock gating and operand isolation is used.
These optimizations are most efficient with multi-cycle architectures and very suitable
for pipelined architectures.
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Table 5. Comparing base (100MHz) with final instance (312MHz)

Total MIPS MIPS/mW mW/MHz
Power Energy
(mW) (uJ)

FFT
Base 73.28 0.619 759 10.35 0.7328
Final 67.29 0.307 1190 17.68 0.2153

Improve 8.17% 50.4% 56.78% 70.82% 70.62%
IDCT

Base 80.45 37.72 1409 17.51 0.8045
Final 81.99 19.14 2318 28.27 0.2624

Improve -1.91% 49.25% 64.51% 61.45% 67.38%

5.1 Putting It All Together

Combining the arch 8 architecture with the aforementioned optimizations results in
a low power, high performance ADRES instance: 4x4 arch 8 4L final. A comparison
between the proposed architecture with the base architecture (shown in Figure 1) is
provided in Table 5. The results indicate a moderate improvement in power of 8%, but
with a higher performance of 56 - 65% due to the pipelining and routings features. This
results in lower energy dissipation of the architecture by 50%. The area of the proposed
architecture was improved from 1.59mm2 (544k gates) to 1.08mm2 (370k gates), which
is equivalent to a 32% improvement.

5.2 Final Architecture Power Decomposition

The final 4x4 arch 8 4L final architecture is placed and routed using Cadence SOC
Encounter v4.2. The power and area of the proposed architecture layout are decom-
posed in Figures 12(a) and 12(b), respectively. These figures are of the ADRES core
architecture excluding data and instruction memories. Due to the fact that the final ar-
chitecture is pipelined the clock tree contribution (4.67mW) is included in these figures.
The data memory and the instruction cache were not included in the synthesis for which
no power estimations are made. The multiplexors in the CGA datapath were removed
during synthesis by the synthesis tool as this was beneficial for performance.

Comparing Figure 3 with Figure 12(a) we notice that the shared local DRFs com-
bined with clock gating results in lower power consumption. The configuration mem-
ories still require a vast amount of power and area, but have decreased in size as well.
Further optimizations of the configuration memories require advance power manage-
ment e.g. power gating, which was not applied in the final architecture. Interesting to
note is the relatively higher power consumption of the CGA FUs compared to Figure 3.
This is caused by the higher utilization of the array compared to the base architecture
consuming more power, but providing higher performance. This increases power effi-
ciency as noticeable in Table 3. The 16 CGA FUs and the CMs require 68.66% of all
the area as depicted in Figure 12(b). The largest single component is the global DRF
(noted as drf vliw) with 8 read and 4 write ports.
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Fig. 12. Results of 4x4 arch 8 4L final @ 312MHz

5.3 Energy-Delay Architectures Analysis of Different Array Sizes

The proposed architecture was created as a 4x4 array, however, different array sizes e.g.
2x2 and 8x8 are of interest to determine the most efficient architecture dimensions us-
ing the same interconnection network. The same sizes for the global (64 registers) and
local RFs (4 registers) are maintained and the FUs are pipelined. Changing the array di-
mension implies different routing capabilities. For example, a 2x2 array has less routing
overhead and requires reduces the possibilities for the compiler to map loops efficiently
on the array. This requires deeper and larger configuration memories to map a loop on
the array and increases power consumption. An 8x8 array improves the possibilities for
the compiler to map loops on the array and reduces the sizes of the CMs.

We compare the pipelined architectures with non-pipelined key architectures men-
tioned in this paper. All key architectures in this paper are noted in Table 6 including
their frequencies of which the energy-delays are depicted in Figures 13 and 14. The first
three architectures are non-pipelined as the last three are pipelined. The 4x4 arch 8 16L
architecture has 16 register words in the local DRFs and PRFs. The architectures with
4L in their name have 4 register words in the local DRFs and PRFs as explained in
Section 4.3.

Table 6 shows that modifying the size of an ADRES instance creates different critical
paths by increasing frequency of a 2x2 and decreasing for an 8x8 instance. The energy-
delay charts in Figure 13 and 14 show that the proposed pipelined 4x4 architecture is
superior to all other architectures. The 8x8 instance has the same performance as the
4x4 architecture for the IDCT code, however, due to its larger size and power consump-
tion the energy consumption is also higher. For the FFT code the 8x8 architecture is

Table 6. Key Architectures

Non-pipelined Architecture Freq (MHz) Pipelined Architecture Freq (MHz)
base 100 4x4 arch 8 4L final 312
4x4 arch 8 16L (16L DRFs) 100 2x2 arch 8 4L final 322
4x4 arch 8 4L (4L DRFs) 100 8x8 arch 8 4L final 294
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Fig. 13. Energy-Delay IDCT Results of Key Architectures
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Fig. 14. Energy-Delay FFT Results of Key Architectures

minimally faster than the 2x2. This is because the scheduler failed to map one key loop
of the FFT code on the array that is reducing performance considerably.

The key conclusions that can be drawn from our study are:

– The CGA is highly dependent on the local DRFs. Sharing DRFs among FUs im-
proves routing for the DRESC compiler increasing scheduling density of the array;

– Replacing PRFs with busses is only beneficial if there are sufficient local DRFs;
– The optimal local DRF and PRF sizes of the proposed architecture is 4 words with-

out influencing performance. The DRESC compiler can be enhanced for the array
by improving the local DRF utilizations for loops;

– An array dimension of 4x4 balances energy vs. performance best for the FFT and
IDCT kernels.
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6 Conclusions

This paper delivers for the first time systematic explorations on the ADRES coarse-
grained reconfigurable array template. An existing ADRES instance was optimized in
terms of power, performance and energy. Several architectures were explored by fo-
cussing on the register file distributions and different interconnect topologies. The pro-
posed architecture is evaluated for reduction of register file sizes.

The distribution of local data register files provided optimal results when the DRFs
with 2 read and 1 write port are shared among 4 diagonally, neighboring functional
units. This created additional routing capabilities for the DRESC scheduler and im-
proved data sharing and scheduling density of the array. Replacing predicate register
files with busses diminished power and energy-delay results. The results of the inter-
connection topology exploration showed that a fully interconnected array of the FUs
and RFs in both row and column direction was optimal. Applying predicate busses im-
proved power and energy consumption when there were sufficient local DRFs available.
The final proposed ADRES instance consists of local PRFS and shared local DRFs, the
Morphosys interconnection scheme and optimizations like clock gating, operand iso-
lation and pipelining. Comparing 2x2, 4x4 and 8x8 instances based on the energy vs.
delay shows that the 4x4 instance performed optimal as the instruction scheduling den-
sity is highest. The DRESC compiler has significant room for improvement for larger
arrays.

In conclusion we show that ADRES offers an attractive path for low power scaling
of e.g. VLIW DSP cores. The proposed ADRES architecture shows good performance
efficiency of 25MIPS/mW and power efficiency 0.24mW/MHz at 312MHz. This im-
proves the performance (MIPS/mW) by 60 - 70% and energy by 50% The energy con-
sumption is 0.307uJ - 19.14uJ and the performance is 1190 - 2318 MIPS for FFT and
IDCT, respectively. The area utilization is 1.08mm2 for the ADRES core studied here
targeting 90nm TSMC libraries. Comparing the ADRES base architecture with the pro-
posed ADRES architecture the performance (MIPS/mW) improved by 60 - 70%, energy
by 50% and area by 32%.

References

1. Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.: ADRES: An Architecture with
Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix. In: IMEC
2003, Kapeldreef 75, B-3001, Leuven, Belgium (DATE 2004)

2. KressArray, http://kressarray.de
3. SiliconHive, http://www.silicon-hive.com
4. PACT XPP Technologies, http://www.pactxpp.com
5. Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N.: MorphoSys: an integrated

reconfigurable system for data-parallel and computation-intensive applications. In: Univer-
sity of California (US) and Federal University of Rio de Janeiro (Brazil), pp. 465–481. IEEE
Transactions on Computers, Los Alamitos (2000)

6. Hartenstein, R.: A Decade of Reconfigurable Computing: A Visionary Retrospective, CS
Dept (Informatik), University of Kaiserlautern, Germany, March 2001, Design, Automation
and Test in Europe, 2001. Conference and Exhibition pp. 642–649 (2001)

http://kressarray.de
http://www.silicon-hive.com
http://www.pactxpp.com


Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 81

7. Lambrechts, A., Raghavan, P., Jayapala, M.: Energy-Aware Interconnect-Exploration of
Coarse Grained Reconfigurable Processors. In: WASP. 4th Workshop on Application Spe-
cific Processors (September 2005)

8. Bouwens, F., Berekovic, M., Kanstein, A., Gaydadjiev, G.: Architectural Exploration of the
ADRES Coarse-Grained Reconfigurable Array. In: Diniz, P.C., Marques, E., Bertels, K.,
Fernandes, M.M., Cardoso, J.M.P. (eds.) ARC 2007. LNCS, vol. 4419, pp. 1–13. Springer,
Heidelberg (2007)

9. Kwok, Z., Wilton, S.J.E.: Register File Architecture Optimization in a Coarse-Grained Re-
configurable Architecture. In: FCCM 2005. Proceedings of the 13th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, vol. 00, University of British
Columbia (2005)

10. http://www-sop.inria.fr/esterel.org/
11. Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkerst, D., Lauwereins, R.: Architecture Explo-

ration for a Reconfigurable Architecture Template. In: IEEE Design & Test of Computers,
pp. 90–101. IMEC and Katholieke Universiteit Leuven (March 2005)

12. Münch, M., Wurth, B., Mehra, R., Sproch, J., Wehn, N.: Automating RT-Level Operand Iso-
lation to Minimize Power Consumption in Datapaths. In: Proceedings Design, Automation
and Test in Europe Conference and Exhibition 2000, pp. 624–631 (2000)

http://www-sop.inria.fr/esterel.org/


Implementation of an UWB Impulse-Radio Acquisition
and Despreading Algorithm on a Low Power ASIP

Jochem Govers1, Jos Huisken2, Mladen Berekovic3, Olivier Rousseaux3,
Frank Bouwens3, Michael de Nil3, and Jef Van Meerbergen1,4

1 Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven, Netherlands
jgovers@gmx.net

2 Silicon Hive High Tech Campus 45 5656 AA Eindhoven, Netherlands
jos.huisken@siliconhive.com

3 Holst-centre High Tech Campus 42 5656 AA Eindhoven, Netherlands
mladen.berekovic@imec-nl.nl,
frank.bouwens@imec-nl.nl,

olivier.rousseaux@imec-nl.nl,
michael.denil@imec-nl.nl

4 Philips Research Eindhoven High Tech Campus 5 5656 AA Eindhoven, Netherlands
jef.van.meerbergen@philips.com

Abstract. Impulse Radio-based Ultra-Wideband (UWB) technology is a strong
candidate for the implementation of ultra low power air interfaces in low data
rate sensor networks. A major challenge in UWB receiver design is the low-
power implementation of the relatively complex digital baseband algorithms that
are required for timing acquisition and data demodulation. Silicon Hive offers
low-power application specific instruction set processor (ASIP) solutions. In this
paper we target the low-power implementation of an UWB receiver’s digital base-
band algorithm on an ASIP, based on Silicon Hive’s solutions.

We approach the problem as follows. First we implement the algorithm on an
existing ASIP and analyze the power consumption. Next we apply optimizations
such as algorithmic simplification, adding a loopcache and adding custom oper-
ations to lower the dissipation of the ASIP. The resulting ASIP consumes 0.98 nJ
(with a spreading factor of 16) per actual data bit, which is lower than an existing
application specific integrated circuit (ASIC).

1 Introduction

First-generation UWB Impulsed-Radio [1] (UWB-IR) transceivers have been devel-
oped at the Holst Centre with the goal of reducing the power consumption of wireless
sensor nodes. In the current radio, an ASIC implementation of the digital baseband al-
gorithm is used [2]. It is designed for worst case conditions and does not exploit the
fact that the computational requirements can vary dependent on the input data. The
goal of this paper is to show how the computation intensive part of the digital baseband
algorithm can be implemented on a processor based solution. This leads to major chal-
lenges: designing a high speed processor to handle the algorithm and to compete with
the low power consumption of the ASIC implementation.

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 82–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Section 2 gives an introduction to UWB Impulse-Radio. The reference application
code and processor are described in Sect. 3, also the performance numbers are given.
Section 4 shows steps that can be taken to reduce the power. Section 5 shows how the
optimized application and processor were constructed, also the corresponding perfor-
mance numbers are given. In Sect. 6 we compare the performance of the ASIP with the
ASIC. Finally the conclusions in this paper are stated in Sect. 7.

2 UWB Impulse-Radio

2.1 Introduction

The energy in a single UWB pulse compared to the energy in the noise is very small. The
Federal Communications Commission (FCC) limits the UWB emission to -41.3 dBm/
MHz. To still be able to retrieve the information from the channel a single data bit
is transmitted over multiple pulses. A spreading code is used to map a single bit on
multiple pulses. The length of this spreading code is called the spreading factor or Ncpb.
This spreading code is usually a pseudo-random cyclic code consisting of Ncpb chips.
In the developed prototype [2], Ncpb is 2p, with a minimum length of 4 and a maximum
length of 32 chips, thus p can vary between 2 and 5. The UWB-IR setup uses a fixed
pulse repetition frequency (Rpulse) of 20 MHz, the bit transmission rate (Rbit) can be
computed with Form. 1.

Rbit =
Rpulse

Ncpb
. (1)

The number of pulses used to represent a single bit influences the SNR ratio (Form. 2).
Ncpb is increased with decreasing SNRpulse to maintain a constant bit-error-rate. The
bit-error-rate is dependent of the SNRbit.

SNRbit = SNRpulse + 10 logNcpb . (2)

UWB-IR uses packets to transmit data (Fig. 1). The head and end of preamble sequence
together are used to synchronize the receiver on the transmitter.

Fig. 1. Layout of a UWB packet

2.2 Transmitter

The transmitter is responsible for creating the pulse sequence from the incoming data
stream. This is done in the following steps: first spreading of the incoming data stream
with the spreading code, then modulation of the spread sequence into UWB pulses and
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finally generation of the pulse sequence. First the incoming data stream is spread by
substituting each data bit with the spreading code or the inverted spreading code de-
pending on the original value of the data bit (one/zero). For pulse position modulation
(PPM) the spread sequence is converted to a sequence of unit pulses with or without
time shift depending on the value of each chip (plus or minus one) in the spread se-
quence. This time shift is smaller than the inter-pulse period of each pulse being 50 ns
and determined by Rpulse. For binary phase shift keying (BPSK) modulation the spread
sequence is also converted to a sequence of unit pulses, however the phase of each unit
pulse is inverted or not depending on the value of each chip in the spread sequence.
The sequence of unit pulses is then fed to the antenna by means of a pulse shaper that
complies with the FCC spectrum requirements.

Fig. 2. Analog front-end receiver

2.3 Receiver

The UWB receiver consists of two major parts, an analog front-end (AFE) and a digital
baseband (DBB).

The AFE architecture is outlined in Fig. 2. This architecture has been introduced in
[3,4]. The received signal is amplified and down-converted in quadrature before analog
matched filtering. The analog matched filter is implemented in the form of an integrator
with integration time equal to the pulse duration (2 ns), which is equivalent to correla-
tion with a rectangular pulse template. The output of the matched filter is sampled with
one sample per pulse and fed to the DBB for demodulation.

The DBB must synchronize the AFE on the clock of the transmitter in order to suc-
cessfully receive the payload. The clock frequency of the transmitter is assumed to be
equal to that of the system clock (fTx = fsystem). However the difference between the
clock phase of fsystem and fTx can not be ignored. A programmable delay line, called
clock delay, is used to delay this fsystem (minimizing the phase difference) and align
the timing of the front-end with the timing of the incoming pulses.

The quadrature receiver can be used for both non-coherent PPM and coherent BPSK
modulation. In the case of PPM modulation the information is in position of the received
pulse. For BPSK the information is in the phase of the received pulse.
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The DBB is responsible for the following tasks, which are described in further detail
in Sect. 3:

– Demodulation of the payload data bits,
– Control of the timing circuit (programming the delay of the delay line),
– Synchronization of the spreading code with the received pulses.

3 Reference Application and Processor

First the algorithm, or application code, of the digital baseband is described. Then the
architecture of the reference processor is given and finally the results of the application
code running on the processor are given.

3.1 Application Code

The process of demodulating an UWB burst is done by the DBB. The most important
modes of the DBB are called: ACQ1, ACQ2, EOP and DATA for respectively the first
part of acquisition, the second part of acquisition, end of preamble and data mode.

ACQ1 Mode. In ACQ1 mode the DBB tests whether a signal is present on the channel
for a given clock delay. If the DBB finds a signal it will switch to ACQ2 mode, otherwise
it will remain in ACQ1 mode.

The test starts by retrieving Ncpb DVs. These DVs are correlated with Ncpb different
rotations of the spreading code. A higher correlation result means that the DVs are more
similar to the spreading code. The process of retrieving Ncpb DVs and correlating Ncpb

times is repeated Nb times. Nb is the number of tries on each clock delay, in this paper
we use Nb = 3. The Ncpb correlations are accumulated over Nb tries, resulting in Ncpb

accumulated correlations. If one of these accumulated correlations is above a threshold
there is signal on the channel for this clock delay. If not the AFE is switched to a
different clock delay and the DBB tests for a signal on the channel again. The threshold
is SNRpulse dependent and is used to segregate noise from useful signal.

ACQ2 Mode. ACQ2 mode is quite similar to ACQ1 mode, however in this mode
the DBB searches the optimal clock delay and spreading code phase. The process of
retrieving Ncpb DVs and correlating Ncpb times is repeated for Nb times. Again the
results are accumulated, but now the highest accumulated correlation, the correspond-
ing spreading code phase and clock delay are stored. The spreading code phase can be
easily computed from the spreading code used in the correlation. This process is re-
peated for every possible clock delay. When every clock delay is processed, the DBB
determines whether the highest stored correlation is above a threshold. If not there was
a false positive in ACQ1 mode and the DBB will go back to ACQ1 mode. If it is above
the threshold the DBB switches the AFE to the stored clock delay corresponding to the
highest stored correlation, depending on the corresponding spreading code phase the
DBB will ignore a number of DVs and the DBB switches to EOP mode.
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EOP Mode. When the DBB enters the EOP mode it is synchronized on the clock delay
and spreading code phase, therefore it does not have to try all rotations of the spread-
ing code. In this mode the DBB searches for the End-of-Preamble (EOP) sequence to
know where the preamble ends and the payload begins. First Ncpb DVs are retrieved
and correlated on the spreading code. The sign of the correlation result (1 or -1) is
stored in memory, which also contains signs from EOP length previous correlations. To
determine whether the EOP sequence is found a correlation is performed on the signs
inside the memory and the EOP sequence. If the correlation is above a threshold, which
is directly determined by the EOP length, the DBB switches to DATA mode. Also the
number of signs, which are stored during EOP mode, are counted. If this number is too
high the DBB switches back to ACQ1 mode, because this means that there was a false
positive during ACQ1 mode.

DATA Mode. DATA mode is the final mode of the receiver and is also the one with the
least complexity. At this point the DBB is also synchronized at bit level and each new
bit is part of the payload. First Ncpb DVs are retrieved and despread. Despreading is
the process of correlating Ncpb DVs with the spreading code. Depending on the sign of
the correlation value the data bit value is 1 or 0, positive or negative respectively. Each
data bit is stored in memory. Furthermore the number of received data bits is counted
and once it is equal to the length of the payload, the DBB has finished demodulating
an UWB burst. At this point the DBB will clear all the synchronization settings and
switches to ACQ1 mode: ready to demodulate a new UWB burst.

3.2 Processor

The reference processor is a Moustique IC2 VLIW offered by Silicon Hive, based on
the work in [5] . This processor has the following properties:

– Combination of very long instruction word (VLIW) and SIMD results in 128 GOPS
at 200 MHz,

– 5-issue slot VLIW processor,
– 24-way SIMD processing,
– Scalar data path for standard C programs,
– Supports code compaction,
– Distributed register file architecture for scalability and silicon area reduction,
– Fine-grain clock gating for low power operation,
– Instruction set optimized for imaging applications,
– Extensive I/O support including AHB slave and master interfaces,
– Built using NXP 65 nm libraries,
– Synthesized with RTLCompiler for a clock frequency of 200 MHz.

This particular processor was selected because it also contains single instruction multi-
ple data (SIMD) operations. These SIMD operations perform one operation onto mul-
tiple data and can be used to increase the data level parallelism. The algorithm strongly
depends on correlations. Correlations are multiplications and additions that can be done
in parallel, therefore SIMD operations are very useful to speed-up the algorithm.
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3.3 Reference Results

The application can be simulated on the processor at different stages:

– sched: compilation of code with HiveCC and scheduled for the processor, simulated
on a C model of the processor.

– netlist: compilation of code with HiveCC and scheduled for the processor, simu-
lated on the netlist model of the processor (after layout, with back-annotated ca-
pacitances).

The power numbers of the Moustique IC2 processor were extracted with gate-level
simulation. This processor was generated in RTL and synthesized with Cadence RTL-
Compiler v06.10-s024 1 using NXP 65 nm libraries. This library allows eight metal
layers, has a default supply voltage of 1.2 V and a standard threshold voltage. The chip
layout was made using Cadence First Encounter v06.10-s086 1.

Using the output of the netlist simulation and the processor netlist after layout, power
numbers were extracted using Synopsys PrimePower X-2005.12-SP1. The extracted
power numbers can be divided into three domains:

– Active Power: The power that is consumed while executing operations.
– Idle Power: The power that is consumed while the processor is clocked, but not

executing operations.
– Leakage Power: The current that is constantly leaking away when the processor is

powered on. This current is only influenced by environmental parameters such as
temperature.

Table 1 shows the average load and power consumption of the reference processor. The
clock frequency (fclk) of the processor was dynamically changed during each mode, to
minimize the number of Idle cycles. The reference processor has a maximum fclk of
200 MHz.

Because each block of Ncpb DVs arrive at a certain time and we know how many
cycles are needed to process this block we can calculate the average power consumption
using the following formula:

Ptotal =
Eactive ∗ Nactive + Eidle ∗ Nidle

T
+ Pleakage . (3)

E denotes the average energy dissipation per cycle, N denotes the number of cycles
and T denotes the time over which this energy is consumed. The processor runs one
instruction each clock cycle.

From Table 1 we conclude that:

1. The Moustique IC2 can not meet the timing requirements (required fclk too high).
2. The power consumption during EOP and DATA mode scales down with increasing

Ncpb, due to a constant number of Active cycles.
3. The power consumption during ACQ1 and ACQ2 mode increases slightly with in-

creasing Ncpb, due to an increasing number of Active cycles and SIMD operations.
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Table 1. Average Load and Power Consumption of Reference Processor

Ncpb ACQ1
Active Idle fclk Power Energy

[Cycles/bit] [Cycles/bit] [MHz] [mW] [nJ/bit]
4 51.7 0.3 260 53 10.5
8 83.7 0.3 210 55 22.0

16 145.0 3.0 185 64 50.9
Ncpb ACQ2

4 53.3 0.7 270 54 10.7
8 86.0 2.0 220 56 22.3

16 148.0 4.0 190 64 50.8
Ncpb EOP

4 22 1 115 21 4.2
8 22 2 60 13 5.2

16 22 2 30 7 5.7
Ncpb DATA

4 15 1 80 15.9 3.2
8 15 1 40 8.4 3.4

16 15 1 20 5.3 4.2

Leakage 0.94mW

Furthermore we see in Fig. 3 that 37% of the total power is consumed by the program
memory and 49% of the total power is consumed by SIMD operations. Therefore it is
of interest to reduce these two components. Note that different modes show a similar
partitioning of the power consumption. Before we improve the processor we first state
a number of possible optimization steps in Sect. 4 and then apply these in Sect. 5.

4 Optimizing for Power Reduction

This section contains a number of options to reduce the power.

4.1 Reduction of the Instruction Word Size

It is possible to reduce the instruction word (IW) size by:

1. Reduction of the number of words in register files (RF). Each RF is controlled
directly from the IW, therefore smaller RFs require a smaller IW. The reduction in
IW size is only logarithmic with respect to the reduction in RF words.

2. Removing unnecessary operations, functional units or issue slots (IS). The reduc-
tion in IW size is only logarithmic with respect to the number of removed opera-
tions. This also has the advantage that the total hardware size is reduced.

3. Reduction of immediate size. Immediates require many bits in the IW, which are
not efficiently used [6]. The reduction in immediate bits is directly reflected in the
reduction of IW bits.
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4. Reduction of connectivity and ports of RFs. Connectivity is the way each RF is con-
nected to the ISs. Connections are made with switches and are controlled in the IW.
Ports are used to read/write from/into RFs. The number of ports determines the num-
ber of possible concurrent reads/writes. Each port is directly controlled in the IW.

The draw-back of these optimizations is the loss in flexibility: smaller RFs or less
operations mean that the processor can handle a smaller variety of applications. Smaller
immediates can result in an increased cycle count to execute the same application.

4.2 Loopcache

Fetching instructions from program memory is an important power consumer in a pro-
cessor. It is possible to reduce the program memory activity, and therefore power con-
sumption, by adding a loopcache.

A loopcache of size n is a buffer that contains a fixed number of n IWs. With each
IW fetch the loopcache tests whether the IW is stored in the buffer. If it is the IW is
fetched from the buffer. If not the IW is fetched from program memory. Only if the
loopcache is turned on the fetched IW is also stored in the buffer. The loopcache uses
a direct mapping algorithm [6]. The user has full control over the loopcache to enable
optimal usage of the loopcache and to minimize power usage.

4.3 Input Operand Isolation

The same input operand is often shared between multiple FUs. A FU that is not in use
can still consume power, because the input transitions can propagate from the inputs to
the rest of the circuit. This can be solved by isolation of the FU operands. Isolation is
the process of holding the value of each input not used in the FU, see also [7].

4.4 Clock Gating

Clock gating means that the clock is decoupled from those parts of the circuit that are
not active [8,9,10]. Fine grained clock gating is used in the reference processor. Coarse
grained clock gating enables/disables the top-level clock. A consequence of top-level
clock gating is that an external circuitry must enable the top-level clock when required.
This is however not a problem when data arrives periodically.

4.5 Power Gating

Power gating is the process of cutting of the power from blocks that are not used [11,12].
Cutting of the power has the advantage that the block will consume no power at all.
Power gating can be applied to both standard cells and memories and is typically easier
to implement than adaptive voltage control.

4.6 Custom Operations

Custom operations can be used to meet specific goals, such as performance require-
ments or power reduction. Interesting custom operations can be found using detection
of patterns of operations in the data flow graph of the application [13,14].
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5 Constructing the Optimized Application and Processor

In this section the optimization steps are selected and the impact is quantified. This
does not only include the architecture optimizations discussed in the previous section
but also the application.

5.1 Application Code Modifications

The following modifications where applied to construct the optimized application:

1. The operations have been rewritten and rearranged to give the compiler more free-
dom. This resulted in smaller code loop bodies, compared to the loop bodies in the
reference application and processor, where the cycle reductions ranged from 1 to 5
cycles.

2. The algorithm has been simplified. During ACQ1 and ACQ2 mode Ncpb corre-
lations are accumulated Nb times. Resulting in Ncpb ∗ Nb correlations. By first
accumulating the input of the correlation and then correlating, the number of corre-
lations was decreased to Ncpb correlations. This reduced the number of correlations
during ACQ1 and ACQ2 mode with a factor Nb.

3. Four custom operations have been added. 1 for ACQ1 and ACQ2 mode, 2 for EOP
mode and 1 for DATA mode. They contain a combination of the following opera-
tions: correlation, quantization or shifting/rotation of bits or elements in a vector.

The resulting cycle reductions, to process one bit, are shown in Table 2. Also the
number of IWs has been reduced from 180 to 110 IWs, leading to over 35% code size
reduction.

Table 2. Cycle Reductions per bit: Op-
timized Application and Processor vs.
Reference Application and Processor

Ncpb ACQ1 ACQ2 EOP DATA
[%] [%] [%] [%]

4 80 84 62 63
8 88 88 62 63

16 91 91 62 63

Table 3. Maximum Reduction of Power dissipa-
tion of the Instruction fetch by means of a Loop-
cache

Loopcache ACQ1 ACQ2 EOP DATA
[IWs] [%] [%] [%] [%]

2 24 25 24 37
4 35 37 46 71
8 62 64 87 87

16 74 76 76 76

5.2 Processor Modifications

The maximum power reductions gained by implementing a loopcache with different
buffer sizes and Ncpb = 8 are shown in Table 3 (Form. 4). We assume that the direct
mapping algorithm of the loopcache causes no collision of addresses to the same slot
and that the operations needed to turn the loopcache on/off do not require additional cy-
cles. Note on Form. 4: Pprogrammemory and Ploopcache in the numerator are consumed
by a processor with a loopcache and Pprogrammemory in the denominator is consumed
by a processor without a loopcache.
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reduction = 1 − Pprogrammemory + Ploopcache

Pprogrammemory
. (4)

From Table 3 we conclude that a loopcache with size 16 gives the best overall reduction
in power dissipation of the instruction fetch, assuming that the execution time is evenly
distributed over each mode. This results in a power dissipation reduction, to fetch the
IW, of a factor 4. Normally we expect an increasing power reduction with increasing
size of the loopcache buffer, because more and more instructions words can be fetched
from loopcache. This is however not the case with EOP and DATA mode. These two
functions can be entirely stored in a loopcache buffer of 8 instruction words. Therefore
increasing the size of buffer does not result in an increased number of instruction words
fetched from the loopcache buffer. But the power consumption is increased due to a
larger buffer.

The number of words in the scalar RFs was be reduced with a factor 4 and the
program memory size was reduced from 64 to 12 kbits. Two ISs and six RFs were
removed. Also 11 immediate bits were removed. This resulted in a reduced IW size
from 224 to 91 bit.

To determine whether power gating of elements in SIMD operations is interesting
we constructed 3 processors, 16-way, 32-way and 64-way. N-way is the number of el-
ements in the SIMD operations. On these processors we executed the same application
with Ncpb = 8. Only Ncpb elements of the SIMD operations are used during simulation,
independent of N-way, therefore the percentage of elements actually used changes. Ta-
ble 4 shows how the total power consumption of SIMD operations scales with different
values of N-way. The column marked with ∗ is extrapolated using the other columns.

Table 4. Power Consumption of SIMD Operations with Scaling N-way running the same Appli-
cation and Parameters

N-way 16 32 64 128*
Pactive [mW] 1.8 2.4 4.0 7.2

Pleakage [mW] 0.04 0.09 0.17 0.35

Elements Used 50% 25% 12.5% 6.25%

Table 4 shows that both active and leakage power almost double when N-way dou-
bles. Therefore we conclude that the power consumption increases significantly with
increasing N-way, even if the number of used elements in the SIMD operations is con-
stant. Furthermore the number of elements used in the SIMD operations during an entire
UWB burst is constant. Therefore it is of interest to cut-off power to elements that are
not used, which is possible with power gating. We did not implement power gating but
simulate it, since the automated design flow does not support this yet.

In the optimized processor we simulated a top-level clock gate, therefore the pro-
cessor only consumes leakage power during Idle cycles. This resulted in a maximum
power reduction of 1.2 mW.
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5.3 Optimized Results

To construct the optimized processor the following modifications where combined:

– Removed unused FUs, ISs and RFs,
– Added four SIMD custom operations,
– Reduced and/or optimized RFs and memories,
– Reduced IW size from 224 to 91 bit,
– Introduced top-level clock gate,
– Introduced power gating of elements in SIMD operations,
– Introduced loopcache with a buffer for 16 instruction words.

To estimate (first order) the power consumption with power gating of elements in the
SIMD operations we constructed three processors with N-way: 8, 16 and 32. We assume
that there is no power consumption penalty with power gating. We use the Ncpb − way
processor to simulate in the case of Ncpb 8, 16 and 32. The 8-way processor is also used
to simulate in the case Ncpb = 4.

Each processor was synthesized for fclk of 100 MHz using Cadence RTLCompiler
and 65 nm libraries. If the processor would be synthesized for higher frequencies the
design area and power consumption would increase significantly [15]. The layout of the
resulting 32-way processor is shown in Fig. 4.

Fig. 3. Power partitioning of the refer-
ence processor running in ACQ1 mode
with Ncpb=8

Fig. 4. Layout of 32-way Optimized Processor
(0.23mm2)

The average number of cycles needed to process one bit (Ncpb pulses), provided by
the application schedule, and the average power consumption of the optimized proces-
sor running at 100 MHz are shown in Table 5.

From Table 5 we conclude that we have improved the energy dissipation, reducing
the dissipation with a factor between 12 and 68, compared to the reference processor.
Also conclusions 2 and 3 (found in Sect. 3.3) are also applicable to the optimized pro-
cessor. Finally, if Ncpb = 4 the power consumption is much higher than expected from
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Table 5. Average Load and Consumption of Optimized Processor

Ncpb ACQ1 EOP
Active Power Energy Active Power Energy

[Cycles/bit] [mW] ref. → opt. [nJ/bit] [Cycles/bit] [mW] ref. → opt. [nJ/bit]
4 9.0 1.43 10.5 → 0.29 8 1.30 4.2 → 0.26
8 10.3 0.92 22.0 → 0.37 8 0.74 5.2 → 0.30

16 13.0 0.94 50.9 → 0.75 8 0.59 5.7 → 0.48
32 18.3 1.07 1.71 8 0.52 0.83

Ncpb ACQ2 DATA
4 8.7 1.44 10.7 → 0.29 4.2 0.85 3.2 → 0.17
8 10.0 0.94 22.3 → 0.37 4.2 0.53 3.4 → 0.21

16 12.7 0.94 50.8 → 0.75 4.2 0.44 4.2 → 0.35
32 18.0 1.08 1.73 4.2 0.41 0.66

the results in the other cases. This is because the 8-way processor has been used dur-
ing simulations and that the number of cycles to process a single pulse is significantly
higher than in the other cases.

With the numbers shown in Table 5 we can calculate the energy dissipation to receive
a net data bit (Table 6) during Use Case 1. Use Case 1 has the following properties:

– DBB is switched on 100 μs before the actual UWB burst,
– Header of 1024 bits,
– Payload of 1024 bits.

Table 6. Distribution of Execution Time and Overall
Energy Consumption During Use Case 1

Ncpb ACQ1 ACQ2 EOP DATA Energy
[%] [%] [%] [%] [nJ/net-data-bit]

4 22.6 5.9 31.4 40.1 0.58
8 14.2 6.5 34.8 44.5 0.61

16 9.2 6.9 36.8 47.1 0.98
32 6.5 7.1 37.8 48.6 1.79

Table 7. Power Consumption:
ASIP vs. ASIC

Ncpb ACQ1 ACQ2 EOP DATA
[%] [%] [%] [%]

4 151 151 137 90
8 97 98 78 55

16 99 99 63 47
32 113 114 54 43

6 Performance Comparison ASIP vs. ASIC Implementation

In this section we compare the performance of the ASIP implementation developed in
this paper with the ASIC implementation [2].

The ASIC was build using 180 nm libraries, however the processor was build using
NXP 65 nm libraries. To make a good comparison we scale the power numbers of the
ASIC implementation as if it were build using 65 nm libraries [2]. The original power
consumption was 10 mW, independent of any parameter, according to oral communi-
cations with the Holst Centre. The resulting power consumption after scaling was 0.95
mW.
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Table 7 shows the power comparison between the ASIP and the ASIC implementa-
tion. Each number was calculated with the following formula:

comparison =
Pasip mode(Ncpb)

Pasic
. (5)

Using Use Case 1 of Sect. 5 we can compare the energy needed to receive one net data
bit between the ASIP and ASIC (Fig. 5).

Fig. 5. Energy dissipation per net data bit during Use Case 1: ASIP vs. ASIC

In Fig. 5 we see that the ASIP solution proposed in this paper has a lower energy
consumption with most settings (Ncpb ≥ 8) than the ASIC. This is counter intuitive,
because an well designed ASIC is specifically tuned to the application using minimal
hardware. An ASIP solution is also tuned to the application, however the ASIP has a
large control overhead, resulting in more hardware. The reason for this result is that the
ASIC is designed for worst-case conditions and not much effort has been put in opti-
mizing the design. Furthermore the ASIP adapts to the requirements of the algorithm,
dependent of the situation. This flexible and dynamic behavior is possible, because the
ASIP is programmable.

7 Conclusions

The programmable solution proposed in this paper is more flexible than the ASIC im-
plementation [2]. This paper shows that an ASIP can be more power efficient than an
ASIC. We can not generalize this, because we were able to exploit advantages with
the ASIP and exploit disadvantages of the ASIC. These advantages or disadvantage are
dependent of the application.

The energy per net data bit is reduced if the spreading factor is greater than or equal
to 8, with a maximum reduction of 43%.
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Large reductions have been accomplished by:

– Optimization and simplification of the algorithm,
– Adding custom operations,
– Removing unused register files, issue slots and functional units,
– Introducing a loopcache,
– Introducing top-level clock gating,
– Introducing power gating of elements in SIMD operations.

The algorithmic optimization and simplification combined with custom operations re-
sulted in a reduced cycle count with a factor between 2 and 11, also the number of
words was reduced from 180 to 110 instruction words. Custom operations resulted in a
speed-up of a factor 5.

Customizing the architecture of the processor resulted in a reduced instruction word
size from 224 to 91 bit.

Top-level clock gating reduced the Idle power consumption with a maximum of 1.2
mW. A loopcache reduced the power consumption to fetch an instruction word with a
factor 4.

When the processor is combined with features such as adaptive voltage control, leak-
age power reduction and is tuned further to the application we believe that the energy
dissipation for each net data bit, compared to the ASIC, can be reduced with a maximum
of 70%.
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Abstract. The ability to check memory references against their asso-
ciated array/buffer bounds helps programmers to detect programming
errors involving address overruns early on and thus avoid many diffi-
cult bugs down the line. This paper proposes a novel approach called
Boud to the array bounds checking problem that exploits the debug
register hardware in modern CPUs. Boud allocates a debug register to
monitor accesses to an array or buffer within a loop so that accesses
stepping outside the array’s or buffer’s bound will trigger a breakpoint
exeption. Because the number of debug registers is typically small, in
cases when hardware bounds checking is not possible, Boud falls back to
software bounds checking. Although Boud can effectively eliminate per-
array-reference software checking overhead in most cases, it still incurs a
fixed set-up overhead for each use of an array within a loop. This paper
presents the detailed design and implementation of the Boud compiler,
and a comprehensive evaluation of various performance tradeoffs associ-
ated with the proposed array bounds checking technique. For the set of
real-world network applications we tested, including Apache, Sendmail,
Bind, etc., the latency penalty of Boud’s bounds checking mechanism
is between 2.2% to 8.8%, respectively, when compared with the vanilla
GCC compiler, which does not perform any bounds checking.

1 Introduction

Checking memory references against the bounds of the data structures they be-
long to at run time provides a valuable tool for early detection of programming
errors that could have otherwise resulted in subtle bugs or total application
failures. In some cases, these software errors might lead to security holes that
attackers exploit to break into computer systems and cause substantial finan-
cial losses. For example, the buffer overflow attack, which accounts for more
than 50% of the vulnerabilities reported in the CERT advisory over the last
decade [4, 20, 15], exploits the lack of array bounds checking in the compiler
and in the applications themselves, and subverts the victim programs to trans-
fer control to a dynamically injected code segment. Although various solutions
have been proposed to subjugate the buffer overflow attack, inoculating applica-
tion programs with strict array bounds checking is considered the best defense
against this attack. Despite these benefits, in practice most applications develop-
ers still choose to shy away from array bounds checking because its performance

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 99–113, 2008.
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overhead is considered too high to be acceptable [14]. This paper describes a
novel approach to the array bounds checking problem that can reduce the array
bounds checking overhead to a fraction of the input program’s original execution
time, and thus make it practical to apply array bounds checking to real-world
programs.

The general problem of bounds checking requires comparing the target address
of each memory reference against the bound of its associated data structure, which
could be a statically allocated array, or a dynamically allocated array or heap re-
gion. Accordingly, bounds checking involves two subproblems: (1) identifying a
given memory reference’s associated data structure and thus its bound, and (2)
comparing the reference’s address with the bound and raising an exception if the
bound is violated. The first subproblem is complicated by the existence of pointer
variables. As pointers are used in generating target memory addresses, it is nec-
essary to carry with pointers the ID of the objects they point to, so that the asso-
ciated bounds could be used to perform bounds checking. There are two general
approaches to this subproblem. The first approach, used in BCC [5], tags each
pointer with additional fields to store information about its associated object or
data structure. These fields could be a physical extension of a pointer, or a shadow
variable. The second approach [13] maintains an index structure that keeps track
of the mapping between high-level objects and their address ranges, and dynam-
ically searches this index structure with a memory reference’s target address to
identify the reference’s associated object. The first approach performs much faster
than the second, but at the expense of compatibility of legacy binary code that
does not support bounds checking. The second subproblem accounts for most of
the bounds checking overhead, and indeed most of the research efforts in the lit-
erature were focused on how to cut down the performance cost of address-bound
comparison, through techniques such as redundancy elimination or parallel ex-
ecution. At the highest compiler optimization level, the minimum number of in-
structions required in BCC [5], a GCC-derived array bounds checking compiler, to
check a reference in a C-like program against its lower and upper bounds is 6, two
to load the bounds, two comparisons, and two conditional branches. For programs
that involve many array/buffer references, software-based bounds checking still
incurs a substantial performance penalty despite many proposed optimizations.
In this paper, we propose a new approach, called Boud1, which exploits the de-
bug register hardware support available in mainstream CPUs to perform array
bounds checking for free. The basic idea is to use debug registers to watch the
end of each array being accessed, and raise an alarm when its bound is exceeded.
Because debug registers perform address monitoring transparently in hardware,
Boud’s approach to checking array bounds violation incurs no per-array-reference
overhead. In some cases, hardware bounds checking is not possible, for exam-
ple, when all debug registers are used up, and Boud falls back to traditional
software bounds checking. Therefore, the overhead of Boud mainly comes from
debug register set-up required for hardware bounds checking, and occasional
software-based bounds checking.

1 BOunds checking Using Debug register.
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The general bounds checking problem requires checking for each memory ref-
erence, including references to a field within a C-like structure. Because Boud
incurs a per-array-use set-up overhead, the debug register approach only makes
sense for array-like references inside a loop, i.e., those of the form A[i], A++,
++A, A--, or --A, where A could be a pointer to a static array or a dynami-
cally allocated buffer. For example, if a dynamic buffer is allocated through a
malloc() call of the following form

X = (* TYPE) malloc(N * sizeof(TYPE))

where N is larger than 1, then Boud takes X as a pointer into an array of N ele-
ments, and Boud will check the references based on X if these references are used
inside a loop. For array-like references outside loops, Boud applies conventional
software-based bounds checking.

The rest of this paper is organized as follows. Section 2 reviews previous work
on array bound checking and contrasts Boud with these efforts. Section 3 de-
scribes the detailed design decisions of the Boud compiler and their rationale.
Section 4 presents a performance evaluation of the Boud compiler based on a set
of array-intensive programs, and a discussion of various performance overheads
associated with the Boud approach. Section 5 concludes this paper with a sum-
mary of the main research ideas and a brief outline of the on-going improvements
to the Boud prototype.

2 Related Work

Most previous array bounds checking research focused on the minimization of
run-time performance overhead. One notable exception is the work from the
Imperial College group [13], which chose to attack the reference/objection asso-
ciation problem in the presence of legacy library routines. The general approach
towards optimizing array bounds checking overhead is to eliminate unnecessary
checks, so that the number of checks is reduced. Gupta [17, 18] proposed a flow
analysis technique that avoids redundant bounds checks in such a way that it
still guaranteed to identify any array bound violation in the input programs,
although it does not necessarily detect these violations immediately after they
occur at run time. By trading detection immediacy for reduced overhead, this
approach is able to hoist some of the bounds checking code outside the loop
and thus reduce the performance cost of array bounds checking significantly.
Asuru [12] and Kolte and Wolfe [14] extended this work with more detailed
analysis to further reduce the range check overhead.

Concurrent array bounds checking [7] first derives from a given program a
reduce version that contains all the array references and their associated bounds
checking code, and then runs the derived version and the original version on sep-
arate processors in parallel. With the aid of a separate processor, this approach
is able to achieve the lowest array bounds checking overhead reported until the
arrival of Boud.
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Unlike most other array bounds checking compiler projects, the Bounds
Checking GCC compiler (BCC) checks the bounds for both array references
and general pointers. Among the systems that perform both types of bounds
checks, BCC shows the best software-only bounds checking performance. How-
ever, BCC only checks the upper bound of an array when the array is accessed
directly through the array variable (not pointer variable) while Boud automati-
cally checks both the upper and lower bounds. Since the Boud compiler is based
on BCC, it can also check the bounds for general pointers.

The array bounds checking problem for Java presents new design constraints.
Because bounds checking code cannot be directly expressed at bytecode level,
elimination of bounds checks can only be performed at run time, after the byte-
code program is loaded. Directly applying existing array bounds checking op-
timizers at run time is not feasible, however, because they are too expensive
for dynamic compilation. ABCD [19] is a light-weight algorithm for elimination
of Array Bounds Checks on Demand, which adds a few edges to the SSA data
flow graph and performs a simple traversal of the resulting graph. Despite its
simplicity, ABCD has been proven quite effective.

Intel X86 architecture includes a bound instruction [10] for array bounds
checking. However, the bound instruction is not widely used because on 80486
and Pentium processors, the bound instruction is slower than the six normal
equivalent instructions. The bound instruction requires 7 cycles on a 1.1 GHz P3
machine while the 6 equivalent instructions require 6 cycles.

Previously, we developed an array bounds checking compiler called CASH [?]
that exploits the segment limit checking hardware in Intel’s X86 architecture [11]
and successfully reduces the performance penalty of array bounds checking of
large network applications such as Apache, Bind and Sendmail under 9%. The
basic idea of CASH is to allocate a segment for each statically allocated array or
dynamically allocated buffer, and then generate array/buffer reference instruc-
tions in such a way that the segment limit check hardware performs array bounds
checking for free. Because CASH does not require software checks for individual
buffer/array references, it is the world’s fastest array bounds checking compiler
for C programs on Intel X86 machines. Unfortunately, the segment limit check
hardware exists only on the Intel IA32 architecture. It is not supported even on
AMD64, EMT64 or Itanium, let alone in other RISC processors such as Sparc,
MIPS, ARM, Xscale or PowerPC.

Qin et al. [16] proposed to exploit the fine-grained memory address monitoring
capability of physical memory error correction hardware to detect array bound
violations and memory leaks. Although the conceptual idea of this ECC-based
scheme is similar to Boud, there are several important differences. First, the
minimal granularity of the ECC-based scheme is a cache line rather than an
individual work as in the case of Boud. Second, the ECC-based scheme did not
seem to be able to handle array references with arbitrary strides. Third, setting
up a honeypot-like cache line in the ECC-based scheme requires not only making
a system call, but also enabling/disabling multiple hardware components, and
is thus considered very expensive. Finally, implementation of the ECC-based



Fast Bounds Checking Using Debug Register 103

scheme may be device-specific and is thus not generally portable across different
hardware platforms.

3 The Boud Approach

3.1 Association Between References and Referents

To check whether a memory reference violates its referent’s bound, one needs
to identify its referent first. To solve this reference-object association problem,
Boud allocates a metadata structure for each high-level object, for example, an
array or a buffer, that maintains such information as its lower and upper bounds.
Then Boud augments each stand-alone pointer variable P with a shadow pointer
PA that points to the metadata structure of P ’s referent. P and PA then form
a new fat pointer structure that is still pointed to by P . Both P and its PA

are copied in all pointer assignment/arithmetic operations, including binding
of formal and actual pointer arguments in function calls. Because P and PA

are guaranteed to be adjacent to each other, it is relatively straightforward to
identify the bounds of a pointer’s referent by following its associated shadow
pointer. For array bounds checking purpose, each array or buffer’s metadata
structure contains its 4-byte lower and upper bounds. For example, when a 100-
byte array is statically allocated, Boud allocates 108 bytes, with the first two
words dedicated to this array’s information structure. The same thing happens
when an array is allocated through malloc().

For pointer variables that are embedded into a C structure or an array of
pointers, the fat pointer scheme is problematic because it may break programs
that make assumptions about the memory layout or size of these aggregate
structures. For these embedded pointer variables, Boud uses an index tree [13]
scheme to identify their referents. That is, when a memory object is created,
Boud inserts a new entry into the index tree based on the object’s address range,
and the new entry contains a pointer pointing to the memory object’s metadata
structure. When an embedded pointer variable is dereferenced or copied to a
stand-alone pointer variable, Boud inserts code to look up the index tree with
the pointer variable’s value to locate its referent’s bound. Although index tree
look-up is slower than direct access using shadow pointer, the performance cost is
small in practice as most pointer variables are stand-alone rather than embedded.

Fat pointers could raise compatibility problems when a Boud function inter-
acts with a legacy function, because legacy functions do not expect the additional
shadow pointers. To solve this problem, Boud allocates a shadow stack, one per
thread, to pass the shadow pointers of pointer arguments. Specifically, before
calling a function, the caller places in the shadow stack the entry point of the
callee and the shadow pointers of all input arguments that are pointers. If a
Boud callee is called, it first checks if the first argument in the shadow stack
matches its entry point, if so composes its fat pointer variables using the shadow
pointers on the shadow stack, and finally removes these shadow stack entries.
When a Boud callee returns a pointer, it uses the same shadow stack mechanism



104 T.-C. Chiueh

to record the associated return address and the shadow pointer of the returned
pointer. If the caller is also compiled by Boud, it compares the return address on
the shadow stack with the call site, and if matched composes a fat pointer rep-
resentation for the returned pointer based on the shadow pointer on the shadow
stack.

When a legacy function calls a Boud callee, the callee’s comparison between
its entry point and the first argument on the shadow stack fails, and the callee
simply assigns the shadow pointers of all its pointer arguments to NULL. When
a Boud callee returns, the shadow pointer that it puts on the shadow stack is
ignored by the legacy caller. When a Boud function calls a legacy function, the
information that the caller puts on the shadow stack is ignored by the callee.
When the legacy callee returns, the caller’s comparison of its return address and
the return address on the shadow stack fails, and the caller then sets the shadow
pointer of the returned pointer to NULL and continues. Boud’s shadow stack
mechanism effectively solves the pointer argument passing problem associated
with fat pointers when a legacy function calls a Boud function and when a Boud
function calls a legacy function.

3.2 Debug Register in Intel X86 Architecture

A key innovation in Boud is its use of debug register in detecting array bounds
violation. Debug register hardware is universally supported by most if not all
mainstream CPUs such as Intel’s 32-bit and 64-bit X86, Itanium, ARM, SPARC,
MIPS, PowerPC, etc. In addition, the interfaces these CPUs expose to the soft-
ware are largely the same. In this paper, we will focus only on the Intel X86
processor [11]. However, the technique described below is equally applicable to
other CPUs without much modification.

Debug register is designed to support instruction and data breakpointing
functions required by software debuggers. In the X86 architecture, there are to-
tally eight debug registers (DB0 through DB7) and two model-specific registers
(MSRs). Among them, DB0 to DB3 are used to hold memory addresses or I/O
locations that the debugger wants to monitor. Whenever a memory or instruc-
tion address matches the contents of one of these four registers, the processor
raises a debug exception. With this support, the debugger does not need to per-
form expensive intercept-and-check in software. DB4 and DB5 are reserved. DB6
keeps the debugger status while DB7 is for control/configuration. The detailed
layout of these DR registers is shown in Figure 1.

The primary function of the four debug address registers (DR0 to DR3) is for
holding 32-bit linear breakpoint addresses. The hardware compares every instruc-
tion/data memory address with these breakpoint addresses in parallel with the
normal virtual to physical address translation, and thus incurs no additional per-
formance overhead. The debug status register (DR6) reports the status of the de-
bugging conditions when a debugging exception is generated. For example, Bn bit
signifies that the nth breakpoint was reached. BS and BT bits indicate the excep-
tion is due to single stepping and task switching, respectively. The debug control
register (DR7) allows fine-grained control over each breakpoint condition. The nth
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Fig. 1. Debug registers in Intel X86 processor [11]. DR4 and DR5 are reserved and
thus not shown. The semantics of individual fields are explained in the text.

breakpoint could be enabled or disabled through setting the corresponding Ln or
Gn bit in DR7. Ln bit enables the nth breakpoint for the current task while Gn

bit is for all tasks. When both bits are cleared, the corresponding breakpoint is
essentially disabled. R/Wn field controls the access mode of the nth breakpoint.
For example, value 11 means breaking on either data read or write but not instruc-
tion fetch. LENn field specifies the size of the memory location associated with the
nth breakpoint. Value 00, 01 and 11 indicate length of 1-byte, 2-byte and 4-byte
respectively. For other fields that are not directly related to this project, please
refer to the IA32 architectural manual [11] for their interpretation.

3.3 Detecting Bounds Violations Using Debug Registers

Fundamentally, debug register hardware provides an efficient way to detect sit-
uations when the CPU accesses certain memory addresses. Boud exploits this
capability to detect array bounds violations by monitoring the boundary words
of the arrays accessed within a loop. Almost all known buffer overflow vulner-
abilities occur in the context of a loop. The attacker’s input steps through an
array/buffer from one end to the other and eventually outside of the upper or
lower bound. To apply debug register to array bounds checking, Boud allocates
an extra memory word above and below each array/buffer as a honeypot word,
and puts the addresses of an array’s honeypot words in debug registers before
the array is accessed. Because honeypot words are introduced by the compiler
and thus transparent to the program, they should never be accessed at run time.
Therefore, when a honeypot word in a program is read or written, a breakpoint
exception is raised and the program is terminated immediately as it signifies an
attempt to overflow an array/buffer. As in the case of Cash, this approach does
not require any software-based bounds check for each array/buffer reference.

For an array/buffer reference statement within a loop, Boud allocates a debug
register and determines the address of the honeypot word that should be put
into the debug register. Because debug registers are used in bounds checking,
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they become part of a process’s context, and therefore need to be saved and
restored across context switch and function call/return. Moreover, because some
debuggers also use debug registers, the debug register set-up instructions inserted
by Boud should be disabled when a program is being debugged.

There are three implementation issues associated with Boud’s debug register-
based array bounds checking mechanism. First, because debug registers are priv-
ileged resources, they can only be modified inside the kernel. This means a user
application needs to make a system call to modify debug registers, even within
a small function that accesses a temporary local array. Boud uses two following
two techniques to mitigate this performance problem. Boud sets up all debug
registers required in a called function using a single system call, so that the
fixed system call invocation overhead (about 200 CPU cycles) is amortized over
multiple debug register set-ups. In addition, Boud implements a user-level debug
register cache that contains the current contents of debug registers. When a user
application needs a debug register for bounds checking, Boud’s run-time library
first checks the user-level cache to see if the corresponding honeypot word ad-
dress is already in some debug registers, and returns the matched debug register
if there it is. If the target honeypot word address is not in any debug register,
Boud’s run-time library allocates a debug register and makes a system call to put
the target honeypot word in the chosen debug register. Empirically this debug
register cache saves many unnecessary system calls, and is particularly useful for
programs that repeatedly call a function with local arrays within a loop.

Second, most CPUs, including the Intel IA32/X86 architecture, support only
4 debug registers. If the Boud compiler requires two debug registers to check
each array’s upper/lower bound, it can guard at most two arrays or buffers
at a time using this mechanism, and has to resort to software bounds checks
for other arrays/buffers that are being accessed simultaneously. Fortunately, for
most programs, when an array/buffer is accessed within a loop, one only needs
to monitor its upper or lower bound but not both; therefore only one debug
register is needed. To reduce the number of debug registers per array to one, the
Boud compiler statically analyzes a program to determine the direction in which
each array is accessed (increment or decrement), and sets up a debug register to
protect its lower or upper bound accordingly.

Finally, debug register hardware is less powerful than Cash’s segment limit
check hardware because the former performs point check whereas the latter per-
forms range check. As a result, it is possible that debug register may fail to
detect certain bound violations that segment limit check hardware can catch.
We have identified two corner cases in which debug register-basec check alone
may be ineffective. The first case is exemplified in the following code:

int a[10];
int i;
int *p;
p = &a[10]+5;
for(i = 0; i < 10; i++)
*p++ = i;
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Because the first array reference is already outside the loop, no accesses within
the loop will touch the associated honeypot word and the debug register hard-
ware cannot catch this overflow. In contrast, a normal buffer overflow attack
typically starts from a legitimate element within the buffer and eventually pro-
gresses beyond its bound. To solve this problem, the Boud compiler checks the
first array reference separately in software to ensure that it is within the array’s
bound, and then checks the remaining array references within the loop using
debug register.

The second case in which debug register hardware is ineffective is when the
array references within a loop happen to skip the honeypot word. For example,
when an array reference progresses in steps of 2 words and the honeypot word is
one word beyond the last array element, even if the references step outside the
array’s bound, the debug register cannot help much because the honeypot word
is never accessed. For example,

int a[10];
for(i = 0; i < 10; i++)

a[2*i+1] = i;

Boud solves this problem by statically determining the index gap of each within-
loop array reference and allocating the honeypot words accordingly. This means
that Boud may need to allocate multiple honeypot words for an array’s lower
and upper bound: If the maximum index gap used in a program to traverse
through an array A is K, then the Boud compiler allocates K honeypot words
for both A’s lower and upper bounds. However, at run time, only one of these
K honeypot words is monitored.

For some within-loop array references, their direction of traversal or index gap
cannot be determined statically, but they are fixed throughout the loop at run
time. For these array references, Boud generates code to extract their direction
of traversal or index gap and use the extracted values to set up honeypot words
and debug registers accordingly at run time. Consequently, even for this type of
array references, Boud still needs only one debug register per array reference.

3.4 Optimizations

Setting up a debug register requires making a system call. One way to reduce
the performance cost of debug register set-up is to cache the contents of recently
de-allocated debug registers and reuse them whenever possible. More concretely,
Boud maintains a free dr entry list in user space to keep track of the contents of
recently de-allocated debug resgiters. Whenever a debug register is de-allocated,
Boud does not go into the kernel to modify the debug register; instead it puts the
debug register’s ID and content to the free dr entry list. Whenever a debug
register is to be allocated, Boud checks the memory address to be monitored
against the contents of the debug registers in the free dr entry list. If there
is a match, Boud uses the debug register whose content matches the monitored
address, and chooses any available debug register otherwise.
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When a new monitored memory address matches the previous contents of a
currently available debug register, Boud does not need to make a system call
to modify the matched debug register, because it already contains the desired
value. This optimization dramatically reduces the frequency of debug register
set-up system calls for functions that contain local arrays and are called many
times inside a loop.

There are only four debug registers in the X86 architecture. Boud allocates
debug registers on a first-come-first-serve basis. The first three arrays the Boud
compiler encounters during the parsing phase inside a (possibly nested) loop
are assigned one of the three segment registers. If more than three arrays are
involved within a loop, Boud falls back to software array bounds checking for
references associated with those arrays beyond the first three.

4 Performance Evaluation

4.1 Methodology

The current Boud compiler prototype is derived from the Bounds Checking
GCC [5], which is derived from GCC 2.96 version, and runs on Red Hat Linux
7.2. We chose BCC as the base case for the two reasons. BCC is one of the most
advanced array bounds checking compilers available to us, boasting a consistent
performance penalty of around 100%. It has been heavily optimized. The more
recent bounds checking performance study from University of Georgia [2] also
reported that the average performance overhead of BCC for a set of numerical
kernels is around 117% on Pentium III. Moreover, all previous published research
on software-based array bounds checking for C programs always did far worse
than BCC. Finally, the fact that BCC and Boud are based on the same GCC
code basis makes the comparison more meaningful. Existing commercial prod-
ucts such as Purify are not very competitive. Purify is a factor of 5-7 slower than
the unchecked version because it needs to perform check on every read and write.
The VMS compiler and Alpha compiler also supported array bounds checking,
but both are at least twice as slow compared with the unchecked case on the
average. In all the following measurements, the compiler optimization level of
both BCC and Boud is set to the highest level. All test programs are statically
linked with all required libraries, which are also recompiled with Boud.

To understand the quantitatively results of the experiments run on the Boud
prototype presented in the next subsection, let’s first analyze qualitatively the
performance savings and overheads associated with the Boud approach. Com-
pared with BCC, Boud’s bounds checking mechanism does not incur any per-
array-reference overhead, because it exploits debug register hardware to detect
array bound violations. However, there are other overheads that exist only in
Boud but not in BCC. First, there is a per-program overhead, which results from
the initial set-up of the debug register cache. Then there is a per-array overhead,
which is related to debug register setting and resetting. On a Pentium-III 1.1-
GHz machine running Red Hat Linux 7.2, the measured per-program overhead
is 98 cycles and the per-array overhead is 253 cycles.
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Table 1. Characteristics of a set of batch programs used in the macro-benchmarking
study. The source code line count includes all the libraries used in the programs, ex-
cluding libc.

Program Lines Brief Description Array-Using > 3
Name of Code Brief Description Loops Arrays
Toast 7372 GSM audio compression utility 51 6 (0.6%)
Cjpeg 33717 JPEG compression utility 236 38 (1.5%)
Quat 15093 3D fractal generator 117 19 (3.4%)

RayLab 9275 Raytracer-based 3D renderer 69 4 (0.2%)
Speex 16267 Voice coder/decoder 220 23 (2.8%)

Gif2png 47057 Gif to PNG converter 277 9 (1.3%)

Table 2. The performance comparison among GCC, BCC, and based on a set of batch
programs. GCC numbers are in thousands of CPU cycles, whereas the performance
penalty numbers of and BCC are in terms of execution time percentage increases with
respect to GCC.

Program Name GCC Boud BCC
Toast 4,727,612K 4.6% 47.1%
Cjpeg 229,186K 8.5% 84.5%
Quat 9,990,571K 15.8% 238.3%

RayLab 3,304,059K 4.5% 40.6%
Speex 35,885,117K 13.3% 156.4%

Gif2png 706,949K 7.7% 130.4%

4.2 Batch Programs

We first compare the performance of GCC, BCC, and Boud using a set of batch
programs, whose characteristics are listed in Table 1, and the results are shown
in Table 2. In general, the performance difference between Boud and BCC is
pretty substantial. In call cases, the performance overhead of Boud is below
16%, whereas the worst-case performance penalty for BCC is up to 238%.

A major concern early in the Boud project is that the number of debug registers
is so small that Boud may be forced to frequently fall back to the software-based
bounds check. Because Boud only checks array references within loops, a small
number of debug registers is a problem only when the body of a loop uses more
than 3 arrays/buffers. That is, the limit on the number of simultaneous array uses
is per loop, not per function, or even per program. To isolate the performance cost
associated with this problem, we measure the number of loops that involve array
references, and the number of loops that involve more than 3 distinct arrays (called
spilled loops) during the execution of the test batch programs (assuming one debug
register is reserved for the debugger). The results are shown in Table 1, where
the percentage numbers within the parenthesis indicate the percentage of loop
iterations that are executed in the experiments and that belong to spilled loops. In
general, the majority of array-referencing loops in these programs use fewer than
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Table 3. Characteristics of a set of popular network applications that are known to
have buffer overflow vulnerability. The source code line count includes all the libraries
used in the programs, excluding libc.

Program Lines of Array-Using > 3
Name Code Loops Arrays

Qpopper-4.0 32104 67 1 (0.9%)
Apache-1.3.20 51974 355 12 (0.5%)

Sendmail-8.11.3 73612 217 24 (1.4%)
Wu-ftpd-2.6.1 28055 138 1 (0.4%)

Pure-ftpd-1.0.16b 22693 45 1 (0.5%)
Bind-8.3.4 46844 734 22 (0.6%)

Table 4. The latency/throughput penalty and space overhead of each network appli-
cation compiled under Boud when compared with the baseline case without bounds
checking

Program Latency Throughput Space
Name Penalty Penalty Overhead

Qpopper 5.4% 5.1% 58.1%
Apache 3.1% 2.9% 51.3%

Sendmail 8.8% 7.7% 39.8%
Wu-ftpd 2.2% 2.0% 62.3%
Pure-ftpd 3.2% 2.8% 55.4%

Bind 4.1% 3.9% 48.7%

5 arrays. Furthermore, the percentage of spilled loop iterations seems to correlate
well with the overall performance penalty. For example, the two programs that
exhibit the highest spilled loop iteration percentage, Quat and Speex, also incur
the highest performance penalty under Boud.

4.3 Network Applications

Because a major advantage of array bounds checking is to stop remote attacks
that that exploit buffer overflow vulnerability, we apply Boud to a set of popular
network applications that are known to have such a vulnerability. The list of ap-
plications and their characteristics are shown in Table 3. At the time of writing
this paper, BCC still cannot correctly compile these network applications. be-
cause of a BCC bug [5] in the nss (name-service switch) library, which is needed
by all network applications. Because of this bug, the bounds-checking code BCC
generates will cause spurious bounds violations in nss parse service list,
which is used internally by the GNU C library’s name-service switch. Therefore,
for network applications, we only compare the results from Boud and GCC.

To evaluate the performance of network applications, we used two client ma-
chines (one 700-MHz Pentium-3 with 256MB memory and the other 1.5-GHz
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Pentium-4 with 512 MB memory), that continuously send 2000 requests to a
server machine (2.1-GHZ Pentium-4 with 2 GB memory) over a 100Mbps Eth-
ernet link. The server machine’s kernel was modified to record the creation and
termination time of each forked process. The throughput of a network applica-
tion running on the server machine is calculated by dividing 2000 with the time
interval between creation of the first forked process and termination of the last
forked process. The latency is calculated by taking the average of the CPU time
used by the 2000 forked processes. The Apache web server program is handled
separately in this study. We configured Apache to handle each incoming request
with a single child process so that we could accurately measure the latency of
each Web request.

We measured the latency of the most common operation for each of these
network applications when the bounds checking mechanism in Boud is turned
on and turned off. The operation measured is sending a mail for Sendmail, re-
trieving a web page for Apache, getting a file for Wu-ftpd, answering a DNS
query for Bind, and retrieving mails for Qpopper. For network applications that
can potentially involve disk access, such as Apache, we warmed up the appli-
cations with a few runs before taking the 10 measurements used in computing
the average. The throughput penalty for these applications ranges from 2.0%
(Wu-ftpd) to 7.7% (Sendmail), and the latency penalty ranges from 2.2% (Wu-
ftpd) to 8.8% (Sendmail), as shown in Table ??. In general, these numbers are
consistent with the results for batch programs, and demonstrate that Boud is
indeed a highly efficient bounds checking mechanism that is applicable to a wide
variety of applications. Table ?? also shows the increase in binary size due to
Boud, most of which arises from tracking of the reference-object association.

Table 3 also shows the percentage of spilled loop iterations for each tested
network applications, which is below 3.5% for all applications except Sendmail,
which is at 11%. Not surprisingly, Sendmail also incurs the highest latency and
throughput penalty among all tested network applications.

One major concern is the perfromance cost associated with debug register
setting and resetting, which require making system calls. Among all tested ap-
plications, Toast makes the most requests (415,659 calls) to allocate debug reg-
isters. 223,781 of them (or 53.8% hit ratio) can find a match in the 3-entry
debug register cache and 191,878 requests actually need to go into the kernel to
set up the allocated debug register. Each call gate invocation takes about 253
cycles, which means that it takes 50,464K cycles for the 191,878 calls, and this
is relatively insignificant as compared with Toast’s total run time (4,727,612K
cycles). Therefore, the overhead of the Toast application compiled under Boud
is still very small (4.6%) though it makes a large number of debug register re-
quests.

5 Conclusion

Although array bounds checking is an old problem, it has seen revived interest
recently out of concerns on security breaches exploiting array bound violation.
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Despite its robustness advantage, most real-world programs do not incorporate
array bounds checking, because its performance penalty is too high to be con-
sidered practical. Whereas almost all previous research in this area focused on
static analysis techniques to reduce redundant bounds checks and thus minimize
the checking overhead, this work took a completely different approach that relies
on the debug register hardware feature available in most mainstream CPUs. By
leveraging debug registers’ address monitoring capability, Boud can accurately
detect array bound violations almost for free, i.e., without incurring any per-
array-reference overhead most of the time. We have successfully built a Boud
prototype based on the bound-checking GCC compiler under Red Hat Linux
7.2. The current Boud prototype can check bound violations for array refer-
ences both within and outside loops, although it applies debug register-based
bounds checking only to within-loop array references. Performance measure-
ments collected from running a set network applications on the Boud prototype
demonstrate that the throughput and latency penalty of Boud’s array bounds
checking mechanism is below 7.7% and 8.8%, respectively, when compared with
the vanilla GCC compiler, which does not perform any bounds checking. This
puts Boud as one of the fastest array bounds checking compilers ever reported
in the literature for C programs on the X86 architecture.
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Abstract. Understanding the performance impact of compiler optimizations on
superscalar processors is complicated because compiler optimizations interact
with the microarchitecture in complex ways. This paper analyzes this interaction
using interval analysis, an analytical processor model that allows for breaking
total execution time into cycle components. By studying the impact of compiler
optimizations on the various cycle components, one can gain insight into how
compiler optimizations affect out-of-order processor performance. The analysis
provided in this paper reveals various interesting insights and suggestions for fu-
ture work on compiler optimizations for out-of-order processors. In addition, we
contrast the effect compiler optimizations have on out-of-order versus in-order
processors.

1 Introduction

In modern processors, both the hardware implementation and optimizing compilers are
very complex, and they often interact in unpredictable ways. A high performance mi-
croarchitecture typically issues instructions out-of-order and must deal with a number
of disruptive miss events such as branch mispredictions and cache misses. An optimiz-
ing compiler implements a large number of individual optimizations which not only
interact with the microarchitecture, but also interact with each other. These interactions
can be constructive (improved performance), destructive (lost performance), or neutral.
Furthermore, whether there is performance gain or loss often depends on the particular
program being optimized and executed.

In practice, the only way that the performance gain (or loss) for a given compiler
optimization can be determined is by running optimized programs on the hardware
and timing them. This method, while useful, does not provide insight regarding the
underlying causes for performance gain/loss. By using the recently proposed method
of interval analysis [1,2,3,4], one can decompose total execution time into intuitively
meaningful cycle components. These components include a base cycle count, which is
a measure of the time required to execute the program in the absence of all disruptive
miss events, along with additional cycle counts for each type of miss event. Performance
gain (or loss) resulting from a compiler optimization can then be attributed to either the
base cycle count or to specific miss event(s).

By analyzing the various cycle count components for a wide range of compiler op-
timizations one can gain insight into the underlying mechanisms by which compiler

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 114–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Studying Compiler Optimizations on Superscalar Processors 115

optimizations affect out-of-order processor performance. To the best of our knowledge,
this paper is the first to analyze compiler optimizations on out-of-order processors using
an analytical-based superscalar processor model. The work reported here provides and
supports a number of key insights. Some of these insights provide quantitative support
for conventional wisdom, while others provide a fresh view of how compiler optimiza-
tions interact with superscalar processor performance. To be more specific:

– We demonstrate the use of interval analysis for studying the impact of compiler
optimizations on superscalar processor performance; this is done by breaking up
the total execution time into cycle components and by analyzing the effect of com-
piler optimizations on the various cycle components. Compiler builders can use this
methodology to better understand the impact of compiler optimizations.

– Our analysis provides a number of interesting insights with respect to how com-
piler optimizations affect out-of-order processor performance. For one, the critical
path leading to mispredicted branches is the only place during program execution
where optimizations reducing the length of the chain of dependent operations affect
overall performance on a balanced out-of-order processor — inter-operation depen-
dencies not residing on the critical path leading to a mispredicted branch are typ-
ically hidden by out-of-order execution. Second, reducing the dynamic instruction
count (an important optimization objective dating back to sequential processors)
still is an important compiler optimization criterion for today’s out-of-order pro-
cessors. Third, some compiler optimizations (unintentionally) bring long-latency
loads closer to each other in the dynamic instruction stream, thereby exposing more
memory-level parallelism (MLP) and improving performance.

– We show that compiler optimizations have a different performance impact on in-
order versus out-of-order processors. In fact, the biggest fraction of the total per-
formance gain on in-order processors is achieved by reducing the dynamic instruc-
tion count and critical path length. For out-of-order processors on the other hand,
only about half the performance gain comes from reducing the dynamic instruction
count and critical path length; the other half of the performance gain comes from
optimizations related to the I-cache, L2 D-cache and branch predictor behavior.

2 Decomposing Execution Time into Cycle Components

In order to gain insight into how compiler optimizations affect out-of-order processor
performance, we use a previously developed analytical model called interval analysis.
This section briefly summarizes interval analysis; for a more elaborate discussion the
reader can refer to a number of prior references [1,2,3,4].

2.1 Interval Analysis

Interval behavior observed on superscalar processors is illustrated in Figure 1. The num-
ber of (useful) instructions issued per cycle (IPC) is shown on the vertical axis, and time
(in clock cycles) is shown on the horizontal axis. As illustrated in the figure, an interval
begins at the time new instructions start to fill the issue and reorder buffers following
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Fig. 1. Performance can be analyzed by dividing time into intervals between miss events

the preceding miss event (regardless of which type). Initially, only a small number of
instructions are in the issue buffer, so relatively few can be found to issue in parallel.
However, as instructions continue to fill the window, the scope for finding parallel in-
structions increases, as does the issue rate. In the limit, the window becomes full (or
nearly so) and a steady state issue rate is achieved. At some point, the next miss event
occurs and the stream of useful instructions entering the window ceases. The window
begins draining of useful instructions as they commit, but no new instructions take their
place. Finally, there are no more instructions to issue until the interval ends. In the
meantime, the miss event is being handled by the hardware, for example, an instruction
cache miss is serviced. After the time during which no instructions issue or commit,
the next interval begins with a ramp-up transient as the window re-fills, and instructions
once again begin issuing. The exact mechanisms which cause instructions to stop filling
the window and the timing of the window drain with respect to the occurrence of the
miss event are dependent on the type of miss event, so each type of miss event should
be analyzed separately.

When we use interval analysis to decompose performance into cycle count compo-
nents, there are three main aspects: base cycle counts, miss event cycle counts, and
overlap of miss events.

Base Cycle Counts. If there are N instructions in a given interval and the dispatch width
is D, then it will take �N/D� cycles to dispatch them into the window. In the absence
of all miss events, a balanced superscalar processor can then issue and retire the instruc-
tions at (nearly) the dispatch rate. Consequently, the base cycle count is computed as
�N/D� for an interval containing N instructions.

This stems from the observation that for practical pipeline widths, say up to eight,
one can, in most cases, make the window size big enough that an issue rate matching
the pipeline width can be achieved (under ideal, no miss event, conditions) [5,6,7]. Note
that we equate the dispatch width D with the processor’s ‘pipeline width’, because it
typically defines the maximum sustainable instruction fetch/decode/execution rate. We
call a superscalar processor design balanced when the ROB and other resources such
as the issue buffer, load/store buffers, rename registers, MSHRs, functional units, etc.,
are sufficiently large to support the processor width in the absence of all miss events.

Miss Event Cycle Counts. The cycle counts (penalties) for miss events depend on the
type of miss event.
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Fig. 2. Interval behavior for a branch misprediction

– For a front-end miss event such as an L1 I-cache miss, L2 I-cache miss or an I-TLB
miss, the penalty equals the access time to the next cache level [3]. For example,
the cycle count penalty for an L1 I-cache miss event is the L2 cache access la-
tency.

– The penalty for a branch misprediction equals the branch resolution time plus the
number of pipeline stages in the front-end pipeline cfe, see Figure 2. Previous
work [2] has shown that the branch resolution time can be approximated by the
window drain time cdr; i.e., the mispredicted branch is very often the last instruc-
tion being executed before the window drains. Also, this previous work has shown
that, in many cases, the branch resolution time is the main contributor to the overall
branch misprediction penalty.

– Short back-end misses, i.e., L1 D-cache misses, are modeled as if they are instruc-
tions that are serviced by long latency functional units, not miss events. In other
words, it is assumed that the latencies can be hidden by out-of-order execution,
which is the case in a balanced processor design.

– The penalty for isolated long back-end misses, such as L2 D-cache misses and D-
TLB misses, equals the main memory access latency.

Overlapping Miss Events. The above discussion of miss event cycle counts essentially
assumes that the miss events occur in isolation. In practice, of course, they may overlap.
We deal with overlapping miss events in the following manner.

– For long back-end misses that occur within an interval of W instructions (the ROB
size), the penalties overlap completely [8,3]. We refer to the latter case as over-
lapping long back-end misses; in other words, memory-level parallelism (MLP) is
present.

– Simulation results in prior work [1,3] show that the number of front-end misses in-
teracting with long back-end misses is relatively infrequent. Our simulation results
confirm that for all except three of the SPEC CPU2000 benchmarks, less than 1%
of the cycles are spent servicing front-end and long back-end misses in parallel;
only gap (5.4%), twolf (4.9%), vortex (3.1%) spend more than 1% of their cycles
servicing front-end and long data cache misses in parallel.



118 S. Eyerman, L. Eeckhout, and J.E. Smith

2.2 Evaluating Cycle Count Components

To evaluate the cycle count components in this paper, we use detailed simulation. We
compute the following cycle components: base (no miss events), L1 I-cache miss, L2
I-cache miss, I-TLB miss, L1 D-cache miss, L2 D-cache miss, D-TLB miss, branch
misprediction and resource stall (called ‘other’ throughout the paper). The cycle counts
are determined in the following way: (i) cycles caused by a branch misprediction as the
branch resolution time plus the number of pipeline stages in the front-end pipeline, (ii)
the cycles for an I-cache miss event as the time to access the next level in the memory
hierarchy, (iii) the cycles for overlapping long back-end misses are computed as a single
penalty, and (iv) the L1 D-cache and resource stall cycle components account for the
cycles in which no instructions can be committed because of an L1 D-cache miss or
long latency instruction (such as a multiply or floating-point operation) blocking the
head of the ROB. Furthermore, we do not count miss events along mispredicted control
flow paths. The infrequent case of front-end miss events overlapping with long back-
end miss events is handled by assigning a cycle count to the front-end miss event unless
a full ROB triggers the long back-end miss penalty. Given the fact that front-end miss
events only rarely overlap with long back-end miss events, virtually any mechanism for
dealing with overlaps would suffice. The base cycle component then is the total cycle
count minus all the individual cycle components.

Note that although we are using simulation in this paper, this is consistent with what
could be done in real hardware. In particular, Eyerman et al. [1] proposed an architected
hardware counter mechanism that computes CPI components using exactly the same
counting mechanism as we do in this paper. The hardware performance counter architec-
ture proposed in [1] was shown to compute CPI components that are accurate to within a
few percent of components computed by detailed simulations. Note that in this paper we
are counting cycle components (C alone) and not CPI components as done in [1] because
the number of instructions is subject to compiler optimization. However, the mechanisms
for computing cycle components and CPI components are essentially the same.

3 Experimental Setup

This paper uses all the C benchmarks from the SPEC CPU2000 benchmark suite. Be-
cause we want to run all the benchmarks to completion for all the compiler optimiza-
tions, we use the lgred inputs provided by MinneSPEC [9]. The dynamic instruction
count of the lgred input varies between several hundreds of millions of instructions
and a number of billions of instructions.

The simulated superscalar processor is detailed in Table 1. It is a 4-wide out-of-order
microarchitecture with a 128-entry reorder buffer (ROB). This processor was simulated
using SimpleScalar/Alpha v3.0 [10].

All the benchmarks were compiled using gcc v4.1.1 (dated May 2006) on an Al-
pha 21264 processor machine. We chose the gcc compiler because, in contrast to the
native Compaq cc compiler, it comes with a rich set of compiler flags that can be set
individually. This enables us to consider a wide range of optimization levels. The 22
optimization levels considered in this paper are given in Table 2. This ordering of op-
timization settings is inspired by gcc’s -O1, -O2 and -O3 optimization levels; the
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Table 1. Processor model assumed in our experimental setup

ROB 128 entries
processor width 4 wide
fetch width 8 wide
latencies load 2 cycles, mul 3 cycles, div 20 cycles, arith/log 1 cycle
L1 I-cache 16KB 4-way set-associative, 32-byte cache lines
L1 D-cache 16KB 4-way set-associative, 32-byte cache lines
L2 cache unified, 1MB 8-way set-associative, 128-byte cache lines

10 cycle access time
main memory 250 cycle access time
branch predictor hybrid predictor consisting of 4K-entry meta, bimodal and

gshare predictors
front-end pipeline 5 stages

compiler optimizations are applied on top of each other to progressively evolve from
the base optimization level to the most advanced optimization level. The reason for
working with these optimization levels is to keep the number of optimization combina-
tions at a tractable number while exploring a wide enough range of optimization levels
— the number of possible optimization settings by setting individual flags is obviously
huge and impractical to do. We believe the particular ordering of optimization levels
does not affect the overall conclusions from this paper.

4 The Impact of Compiler Optimizations

This section first analyzes the impact various compiler optimizations have on the vari-
ous cycle components in an out-of-order processor. We subsequently analyze how com-
piler optimizations affect out-of-order processor performance as compared to in-order
processor performance.

4.1 Out-of-Order Processor Performance

Before discussing the impact of compiler optimizations on out-of-order processor per-
formance in great detail on a number of case studies, we first present and discuss some
general findings.

Figure 3 shows the average normalized execution time for the sequence of optimiza-
tions used in this study. The horizontal axis shows the various optimization levels; the
vertical axis shows the normalized execution time (averaged across all benchmarks)
compared to the base optimization setting. On average, over the set of benchmarks
and the set of optimization settings considered in this paper, performance improves by
15.2% compared to the base optimization level. (Note that our base optimization setting
already includes a number of optimizations, and results in 40% better performance than
the -O0 compiler setting.) Some benchmarks, such as ammp and mesa observe no or
almost no performance improvement. Other benchmarks benefit substantially, such as
mcf (19%), equake (23%) and art (over 40%).
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Table 2. Compiler optimization levels considered in this paper

Abbreviation Description
base base optimization level: -O1 -fnotree-ccp -fno-tree-dce

-fno-tree-dominator-opts -fno-tree-dse -fno-tree-ter -fno-tree-lrs
-fno-tree-sra -fno-tree-copyrename -fno-tree-fre -fno-tree-ch
-fno-cprop-registers -fno-merge-constants -fno-loop-optimize
-fno-if-conversion -fno-if-conversion2 -fno-unit-at-a-time

basic tree opt basic optimizations on intermediate SSA code tree
const prop/elim merge identical constants across compilation units

constant propagation and copy elimination
loop opt loop optimizations: move constant expressions out of loop and simplify exit test conditions
if-conversion if-conversion: convert control dependencies to data dependencies using predicated execution

through conditional move (cmov) instructions
O1 optimization flag -O1
O2 -fnoO2 optimization flag -O2 with all individual -O2 optimization flags disabled
CSE apply common subexpression elimination
BB reorder reorder basic blocks in order to reduce the number of taken branches and improve code locality
strength red strength reduction optimization and elimination of iteration variables
recursion opt optimize sibling and tail recursive function calls
insn scheduling reorder instructions to eliminate stalls due to required data being unavailable

includes scheduling instructions across basic blocks
is specific for target platform on which the compiler runs

strict aliasing assumes that an object of one type never reside at the same address as an object
of a different type, unless the types are almost the same

alignment align the start of branch targets, loops and functions to a power-of-two boundary
adv tree opt advanced intermediate code tree optimizations
O2 optimization flag -O2
aggr loop opt perform more aggressive loop optimizations
inlining integrate simple functions (determined based on heuristics) into their callers
O3 optimization flag -O3
loop unroll unroll loops whose number of iterations can be determined at compile time or upon entry to the loop
software pipelining modulo scheduling
FDO feedback-directed optimization using edge counts

Figure 4 summarizes the total performance improvement for the individual cycle
components. This graph divides the total 15.2% performance improvement by the con-
tributions in each of the cycle components. There are a number of interesting insights
to be gained from the above analysis concerning the impact of compiler optimizations
on out-of-order processor performance.

First, compiler optimizations reduce the dynamic instruction count and improve the
base cycle component. Figure 4 shows that an absolute 6.6% performance improvement
(or 43.9% of the total improvement) comes from reducing the base cycle component. As
such, we conclude that reducing the dynamic instruction count, which has been a tradi-
tional objective for optimization dating back to sequential (non-pipelined) processors,
is still an important optimization criterion for today’s out-of-order processors.

Compiler optimizations that aim at improving the critical path of inter-operation de-
pendencies only improve the branch misprediction penalty. This is a key new insight
from this paper: the critical path of inter-operation dependencies is only visible through
the branch misprediction penalty and by consequence, optimizations targetted at re-
ducing chains of dependent instructions only affect the branch resolution time; on a
balanced processor, inter-operation dependencies not residing on the critical path lead-
ing to a mispredicted branch can be effectively hidden by out-of-order execution. Note
that optimizations targeting the inter-operation critical path may also improve the base
and resource stall cycle components in case of unbalanced execution, i.e., when the
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Fig. 3. Averaged normalized cycle counts on a superscalar out-of-order processor
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Fig. 4. Overall performance improvement on an out-of-order processor and an in-order processor
across the various compiler settings partitioned by cycle component

reorder buffer is too small to sustain a given issue rate of instructions; in practice though,
this is an infrequent case. Figure 4 shows the improvement in the branch resolution time
across the optimization settings; this is a 1.2% absolute improvement or a 7.8% relative
improvement.

Finally, compiler optimizations significantly affect the number of miss events and
their overlap behavior. According to Figure 4, 9.6% of the total performance improve-
ment comes from a reduced number of branch mispredictions, and 16.7% and 19.5%
of the total performance improvement comes from improved L1 I-cache and the L2 D-
cache cycle components, respectively. The key observation here is that the reduced L2
D-cache cycle component is almost entirely due to improved memory-level parallelism
(MLP). In other words, compiler optimizations that bring L2 cache miss loads closer
to each other in the dynamic instruction stream improve performance substantially by
increasing the amount of MLP.

4.2 Compiler Optimization Analysis Case Studies

We now present some case studies illustrating the power of interval analysis for gain-
ing insight into how compiler optimizations affect out-of-order processor performance.
Figure 5 shows normalized cycle distributions for individual benchmarks — we selected
the benchmarks that are affected most by the compiler optimizations. These bars are
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Fig. 5. Normalized cycle distributions for the out-of-order processor for art, equake, mcf,
perlbmk and vpr

computed as follows. For all compiler optimization settings, we compute the cycle counts
for each of the nine cycle components: base, L1 I-cache, L2 I-cache, I-TLB, L1 D-cache,
L2 D-cache, D-TLB, branch misprediction and other resource stalls. Once these cycle
counts are computed we then normalize the cycle components for all optimization set-
tings to the total cycle count for the base optimization setting.
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Table 3. The number of benchmarks (out of 15) for which a given compiler optimization has an
positive (more than 0.1%) effect on the various cycle components, the number of retired instruc-
tions, the number long back-end misses and their MLP, and the number of branch mispredictions
and their penalties. Numbers larger than or equal to 9 are shown in bold.

cycle components #insns DL2 and DTLB misses br mispredicts

optimization total base IL1 IL2 ITLB DL1 DL2 DTLB bpred other #DL2 #DTLB MLP #bmp pen

basic tree opt 11 14 5 0 0 2 6 2 11 0 14 3 0 5 11 3
cst prop/elim 6 2 1 0 0 1 0 0 8 0 7 0 0 1 4 4
loop opt 12 12 3 0 0 3 3 0 8 8 13 3 0 3 3 9
if-conversion 7 1 3 0 0 1 6 1 10 1 1 2 0 6 8 5
jump opt (O1) 9 10 4 0 0 2 2 0 3 1 11 1 0 2 3 5
O2 -fnoO2 5 0 3 0 0 2 2 1 8 1 0 1 0 1 5 6
CSE 6 5 3 0 0 2 1 1 8 2 9 1 1 1 6 6
BB reordering 10 10 6 0 0 2 2 0 4 1 11 2 1 0 6 1
strength red 4 3 1 0 0 0 1 1 3 0 2 1 0 1 2 1
recursion opt 7 4 4 0 0 0 3 0 4 0 6 3 0 0 4 3
insn scheduling 5 1 2 0 0 4 3 1 10 4 0 1 0 3 5 10
strict aliasing 8 11 2 0 0 5 3 1 6 3 11 1 1 5 0 10
alignment 5 3 2 0 0 0 3 1 5 0 4 2 0 2 4 2
adv tree opt 6 3 3 0 0 2 4 2 4 3 5 1 2 3 3 5
O2 9 7 4 0 0 0 2 0 6 0 7 3 0 2 4 4
aggr loop opt 7 2 3 0 0 1 2 0 4 1 3 1 0 1 4 0
inlining 12 10 3 0 0 0 7 1 9 1 12 4 1 4 7 4
O3 5 2 2 0 0 0 1 0 3 0 2 0 0 1 3 1
loop unrolling 9 11 1 0 0 3 4 0 7 2 12 0 0 5 3 6
software pipelining 3 1 2 0 0 1 1 0 1 1 0 1 1 0 4 0
FDO 8 7 3 1 0 2 3 1 6 1 10 5 2 1 7 5

Table 4. The number of benchmarks (out of 15) for which a given compiler optimization has a
negative (more than 0.1%) effect on the various cycle components, the number of retired instruc-
tions, the number of long back-end misses and their MLP, and the number of branch mispredic-
tions and their penalties. Numbers larger than or equal to 9 are shown in bold.

cycle components #insns DL2 and DTLB misses br mispredicts

optimization total base IL1 IL2 ITLB DL1 DL2 DTLB bpred other #DL2 #DTLB MLP #bmp pen

basic tree opt 4 0 1 0 0 2 3 0 3 5 1 2 1 4 1 10
cst prop/elim 6 1 4 0 0 0 2 1 2 0 0 2 0 2 3 2
loop opt 1 1 2 0 0 1 3 1 4 0 0 2 1 2 6 3
if-conversion 6 7 3 0 0 2 1 1 1 1 11 1 0 2 2 4
jump opt (O1) 4 1 1 0 0 1 3 2 7 2 0 3 1 3 5 4
O2 -fnoO2 8 11 3 0 0 0 3 0 3 0 13 1 0 2 4 1
CSE 6 6 3 0 0 1 0 1 3 1 4 1 0 1 5 4
BB reordering 2 1 0 0 0 1 3 2 8 2 2 1 1 4 5 11
strength red 3 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0
recursion opt 2 1 1 0 0 0 2 1 4 0 0 1 0 2 4 3
insn scheduling 8 10 4 0 0 1 5 0 1 1 11 3 1 1 3 1
strict aliasing 4 0 2 0 0 0 3 1 2 1 0 3 0 1 6 2
alignment 4 1 4 0 0 2 2 0 3 1 0 2 0 2 3 2
adv tree opt 7 3 3 0 0 0 2 1 7 0 4 2 0 2 6 2
O2 3 1 2 0 0 1 3 1 1 0 2 3 0 1 3 3
aggr loop opt 2 0 1 0 0 1 1 0 1 0 0 1 0 0 1 2
inlining 1 2 2 2 0 3 0 1 4 1 1 1 1 0 3 5
O3 4 1 3 0 0 0 2 0 1 1 1 2 0 0 1 2
loop unrolling 5 1 6 2 0 1 1 0 3 1 1 3 0 1 5 2
software pipelining 3 1 2 0 0 0 1 1 2 0 1 1 0 2 3 4
FDO 6 4 2 0 0 2 3 0 5 2 3 0 0 6 5 7
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During the analysis presented in the next discussion we will also refer to Tables 3
and 4 which show the number of benchmarks for which a given compiler optimization
results in a positive or negative effect, respectively, on the various cycle components.
These tables also show the number of benchmarks for which the dynamic instruction
count is significantly affected by the various compiler optimizations; likewise for the
number of long back-end misses and their amount of MLP as well as for the number
of branch mispredictions and their penalty. We do not show average performance im-
provement numbers in these tables because outliers make the interpretation difficult;
instead, we treat outliers in the following discussion.

Basic Loop Optimizations. Basic loop optimizations move constant expressions out of
the loop and simplify loop exit conditions. Most benchmarks benefit from these loop
optimizations; the reasons for improved performance include a smaller dynamic in-
struction count which reduces the base cycle component. A second reason is that the
simplified loop exit conditions result in a reduced branch misprediction penalty. Two
benchmarks that benefit significantly from loop optimizations are perlbmk (6.7% im-
provement) and art (5.9% improvement). The reason for these improvements is differ-
ent for the two benchmarks. For perlbmk, the reason is a reduced L1 I-cache component
and a reduced branch misprediction component. The reduced L1 I-cache component is
due to fewer L1 I-cache misses. The branch misprediction cycle component is reduced
mainly because of a reduced branch misprediction penalty — the number of branch mis-
predictions is not affected very much. In other words, the loop optimizations reduce the
critical path leading to the mispredicted branch so that the branch gets resolved earlier.
For art on the other hand, the major cycle reduction is observed in the L2 D-cache cycle
component. The reason being an increased number of overlapping L2 D-cache misses:
the number of L2 D-cache misses remains the same, but the reduced code footprint
brings the L2 D-cache misses closer to each other in the dynamic instruction stream
which results in more memory-level parallelism.

If-conversion. The goal of if-conversion is to eliminate hard-to-predict branches
through predicated execution. The potential drawback of if-conversion is that more in-
structions need to be executed because instructions along multiple control flow paths
need to be executed and part of these will be useless. Executing more instructions re-
flects itself in a larger base cycle component. In addition, more instructions need to be
fetched; we observe that this also increases the number of L1 I-cache misses for sev-
eral benchmarks. Approximately half the benchmarks benefit from if-conversion; for
these benchmarks, the reduction in the number of branch mispredictions outweights
the increased number of instructions that need to be executed. For the other half of the
benchmarks, the main reason for the decreased performance is the increased number of
dynamically executed instructions.

An interesting benchmark to consider more closely is vpr: its base, resource stall
and L1 D-cache cycle components increase by 4.5%, 9.6% and 3.9%, respectively. This
analysis shows that if-conversion adds to the already very long critical path in vpr —
vpr executes a tight loop with loop-carried dependencies which results in very long
dependence chains. If-conversion adds to the critical path because registers may need
to be copied using conditional move instructions at the reconvergence point. Because of
this very long critical path in vpr, issue is unable to keep up with dispatch which causes
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the reorder buffer to fill up. In other words, the reorder buffer is unable to hide the
instruction latencies and dependencies through out-of-order execution, which results in
increased base, L1 D-cache and resource stall cycle components.

Instruction Scheduling. Instruction scheduling tends to increase the dynamic instruc-
tion count which, in its turn, increases the base cycle component. This observation was
also made by Valluri and Govindarajan [11]. The reason for the increased dynamic
instruction count is that spill code is added during the scheduling process by the com-
piler. Note also that instruction scheduling reduces the branch misprediction penalty
for 10 out of 15 benchmarks, see Table 3, i.e., the critical path leading to the mispre-
dicted branch is shortened through the improved instruction scheduling. Unfortunately,
this does not compensate for the increased dynamic instruction count resulting in a net
performance decrease for most of the benchmarks.

Strict Aliasing. The assumption that references to different object types never access
the same address allows for more aggressive scheduling of memory operations — this
is a safe optimization as long as the C program complies with the ISO C99 standard1.
This results in significant performance improvements for a number of benchmarks, see
for example art (16.2%). Strict aliasing reduces the number of non-overlapping L2 D-
cache misses by 11.5% for art while keeping the total number of L2 D-cache misses
almost unchanged; in other words, memory-level parallelism is increased.

4.3 Comparison with In-Order Processors

Having discussed the impact of compiler optimizations on out-of-order processor per-
formance, it is interesting to compare against the impact these compiler optimizations
have on in-order processor performance. Figure 6 shows the average normalized cycle
counts on a superscalar in-order processor. Performance improves by 17.5% on average
compared to the base optimization level. The most striking observation to be made when
comparing the in-order graph (Figure 6) against the out-of-order graph (Figure 3) is that
instruction scheduling improves performance on the in-order processor whereas on the
out-of-order processor, it degrades performance. The reason is that on in-order architec-
tures, the improved instruction schedule outweights the additional spill code that may
be generated for accommodating the improved instruction schedule. On an out-of-order
processor, the additional spill code only adds overhead through an increased base cycle
component.

To better understand the impact of compiler optimizations on out-of-order versus
in-order processor performance we now compare in-order processor cycle components
against out-of-order processor cycle components. In order to do so, we use the fol-
lowing cycle counting mechanism for computing the cycle components on the in-order
processor. For a cycle when no instruction can be issued in a particular cycle, the mech-
anism increments the count of the appropriate cycle component. For example, when the
next instruction to issue stalls for a register to be produced by an L2 miss, the cycle
is assigned to the L2 D-cache miss cycle component. Similarly, if no instructions are

1 The current standard for Programming Language C is ISO/IEC 9899:1999, published 1999-
12-01.



126 S. Eyerman, L. Eeckhout, and J.E. Smith

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ba
se

tre
e

op
t

co
ns

t p
ro

p/
el
im

ba
si
c

lo
op

op
t

if-
co

nv
ers

io
n O

1

O
2

-fn
oO

2
C
SE

BB
re

or
de

r

st
re

ngt
h

re
d

re
cu

rs
io
n

opt

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v

tre
e

op
t

O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

un
ro

llin
g

so
ftw

ar
e

pi
pe

lin
in
g

FD
O

a
v
g

n
o
rm

a
liz

e
d

e
x
e
c
u
ti
o
n

ti
m

e

Fig. 6. Average normalized cycle counts on a superscalar in-order processor

available in the pipeline to issue because of a branch misprediction, the cycle is assigned
to the branch misprediction cycle component.

The result of comparing the in-order processor cycle components against the out-of-
order processor cycle components is presented in Figure 4. To facilitate the discussion,
we make the following distinction in cycle components. The first group of cycle compo-
nents is affected by the dynamic instruction count and the critical path of inter-operation
dependencies; these are the base, resource stall, and branch misprediction penalty cycle
components. We observe from Figure 4 that these cycle components are affected more
by the compiler optimizations for the in-order processor than for the out-of-order pro-
cessor: 14.6% versus 8.0%. The second group of cycle components are related to the
L1 and L2 cache and TLB miss events and the number of branch misprediction events.
This second group of miss events is affected more for the out-of-order processor: this
is only 2.3% for the in-order processor versus 7% for the out-of-order processor. In
other words, most of the performance gain through compiler optimizations on an in-
order processor comes from reducing the dynamic instruction count and shortening the
critical path of inter-operation dependencies. On an out-of-order processor, the dynamic
instruction count and the critical path are also important factors affecting overall perfor-
mance, however, about one half of the total performance speedup comes from secondary
effects related to I-cache, long-latency D-cache and branch misprediction behavior.

There are three reasons that support these observations. First, out-of-order execution
hides part of the inter-operation dependencies and latencies which reduces the impact
of critical path optimizations. In particular, in a balanced out-of-order processor, the
critical path of inter-operation dependencies is only visible on a branch misprediction.
Second, the base and resource stall cycle components are more significant for an in-
order processor than for an out-of-order processor; this makes the miss event cycle
components relatively less significant for an in-order processor than for an out-of-order
processor. As such, an improvement to these miss event cycle components results in
a smaller impact on overall performance for in-order processors. Third, scheduling in-
structions can have a bigger impact on memory-level parallelism on an out-of-order
processor than on an in-order processor. A good static instruction schedule will place
independent long-latency D-cache and D-TLB misses closer to each other in the dy-
namic instruction stream. An out-of-order processor will be able to exploit the available
MLP at run time in case the independent long-latency loads appear within a ROB size
from each other in the dynamic instruction stream. An in-order processor on the other
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hand, may not be able to get to the independent long-latency loads because of the pro-
cessor stalling on instructions that are dependent on the first long-latency load.

5 Related Work

A small number of research papers exist on compiler optimizations for out-of-order pro-
cessors, however, none of this prior work analyzes the impact of compiler optimizations
in terms of their impact on the various cycle components.

Valluri and Govindarajan [11] evaluate the effectiveness of postpass and prepass in-
struction scheduling techniques on out-of-order processor performance. In postpass
scheduling, register allocation precedes instruction scheduling. The potential drawback
is that false dependencies introduced by the register allocator may limit the scheduler’s
ability to efficiently schedule instructions. A prepass scheduling on the other hand only
allocates registers after completing instruction scheduling. The potential drawback is that
register lifetimes may increase which possibly leads to more spill code. Silvera et al. [12]
also emphasize the importance of reducing register spill code in out-of-order issue pro-
cessors. This is also what we observe in this paper. Instruction scheduling increases the
dynamic instruction count which degrades the base cycle component and, for most bench-
marks,alsodegradesoverallperformance.Thispaper isdifferent fromthestudyconducted
by Valluri and Govindarajan [11] in two main ways. First, Valluri and Govindarajan limit
their study to instruction scheduling; our paper studies a wide range of compiler optimiza-
tions. Second, the study done by Valluri and Govindarajan is an empirical study and does
not provide the insight that we provide using an analytical processor model.

Pai and Adve [13] propose read miss clustering, a code transformation technique
suitable for compiler implementation that improves memory-level parallelism on out-
of-order processors. Read miss clustering strives at scheduling likely long-latency in-
dependent memory accesses as close to each other as possible. At execution time, these
long-latency loads will then overlap improving overall performance.

Holler [14] discusses various compiler optimizations for the out-of-order HP PA-
8000 processor. The paper enumerates various heuristics for driving various compiler
optimizations such as loop unrolling, if-conversion, superblock formation, instruction
scheduling, etc. However, Holler does not quantify the impact of each of these compiler
optimizations on out-of-order processor performance.

Cohn and Lowney [15] study feedback-directed compiler optimizations on the out-
of-order Alpha 21264 processor. Again, Cohn and Lowney do not provide insight into
how compiler optimizations affect cycle components.

Vaswani et al. [16] build empirical models that predict the effect of compiler opti-
mizations and microarchitecture configurations on superscalar processor performance.
Those models do not provide the insights in terms of cycle components obtained from
interval analysis as presented in this paper.

6 Conclusion and Impact on Future Work

The interaction between compiler optimizations and superscalar processors is diffi-
cult to understand, especially because of overlap effects in superscalar out-of-order
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processors. This paper analyzed the impact compiler optimizations have on out-of-order
processor performance using interval analysis by dividing total execution time into cy-
cle components.

This paper provides a number of key insights that can help drive future work in
compiler optimizations for out-of-order processors. First, the critical path leading to
mispredicted branches is the only place during program execution where the impact
of the critical path of inter-operation dependencies is visible on overall performance.
As such, limiting the focus of instruction scheduling to paths leading to mispredicted
branches could yield improved performance and/or limit compilation time; the latter is
an important consideration for dynamic compilation systems. Second, the analysis in
this paper showed that reducing the dynamic instruction count improves performance
by reducing the base cycle component. As such, compiler builders can use this in-
sight for gearing towards optimizations for out-of-order processors that minimize the
dynamic instruction count, rather than to increase the amount of ILP — ILP can be ex-
tracted dynamically by the hardware. The results presented in this paper shows that
reducing the dynamic instruction count remains an important optimization criterion
for today’s high-performance microprocessors. Third, since miss events have a large
impact on overall performance, more so on out-of-order processors than on in-order
processors, it is important to make compiler optimizations conscious of their potential
impact on miss events. In particular, across the optimization settings considered in this
paper, 47.3% of the total performance improvement comes from reduced miss event
cycle components for the an out-of-order processor versus only 17.3% for the in-order
processor. Fourth, compiler optimizations can improve the amount of memory-level
parallelism by scheduling long-latency back-end loads closer to each other in the bi-
nary. Independent long-latency loads that occur within ROB size instructions from each
other in the dynamic instruction stream overlap at run time which results in memory-
level parallelism and thus improved performance. In fact, most of the L2 D-cache miss
cycle component reduction observed in our experiments comes from improved MLP,
not from reducing the number of L2 D-cache misses. We believe more research can be
conducted in exploring compiler optimizations that expose memory-level parallelism.
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Abstract. Software productivity for embedded systems is greatly lim-
ited by the fragmentation of platforms and associated development tools.
Platform virtualization environments, like Java and Microsoft .NET, help
alleviate the problem, but they are limited to host functionalities run-
ning on the system microcontroller. Due to the ever increasing demand
for processing power, it is desirable to extend their benefits to the rest of
the system. We present an experimental framework based on GCC that
validates the choice of CLI as a suitable processor-independent deploy-
ment format. In particular, we illustrate our GCC port to CLI and we
evaluate the generated bytecode in terms of code size and performance.
We inject it back into GCC through a CLI front-end that we also illus-
trate, and we complete the compilation down to native code. We show
that using CLI does not degrade performance. Compared to other CLI
solutions, we offer a full development flow for the C language, generating
a subset of pure CLI that does not require any virtual machine support
other than a JIT compiler. It is therefore well suited for deeply embed-
ded media processors running high performance media applications.

Keywords: Common Language Infrastructure, embedded systems, de-
ployment, GCC.

1 Introduction

The productivity of embedded software development is heavily limited by sev-
eral factors, the most important being the high fragmentation of the hardware
platforms combined with the multiple target operating systems and associated
tools. Indeed, in order to reach a wide customer base, software developers need
to port, test and maintain their applications to tens of different configurations,
wasting a great deal of effort in the process. Platform virtualization technolo-
gies have been very successful in alleviating this problem, as it is evident by the
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widespread distribution of Java solutions on multiple platforms and operating
systems, as well as .NET on Microsoft-supported platforms. However, because
of their high-level language support, complemented by sophisticated runtimes
and libraries, Java and .NET are well suited only for host functionalities on the
system microcontroller. With the growing demand for new and computational
intensive applications, such as multimedia, gaming and increasingly sophisti-
cated man-machine interfaces, there is a clear need to extend the computing
resources available to software programmers of embedded systems, well beyond
the reach of the system microcontrollers. Historically performance scaling has
been achieved through increased clock frequency, a path which is not available
anymore, especially for portable embedded system, where power consumption
is a primary concern. The alternative is multiprocessing, that by the way has
been adopted in embedded systems well before its more recent introduction in
the PC domain. Multiprocessing comes in many different flavors though, and for
efficiency reasons embedded systems have clearly favored highly heterogeneous
architectures, typically resulting into two well defined and separated subsystems:
the host processing side, composed of one microcontroller (possibly several ones
in the future), and the deeply embedded side composed of multiple dedicated
processors. Because of the difficulty in programming the resulting systems, the
embedded side is mostly programmed by the silicon vendors and sometimes by
the platform providers, while only the host part is open to independent software
vendors (ISV). In order to respond to the increasing demand for computational
power, while keeping the required efficiency, it is highly desirable to grant access
to at least part of the deeply embedded resources to the ISV.

Two main issues must be addressed in order to achieve this goal: 1) the pro-
gramming model and 2) the associated development tools. Indeed, heterogeneous
multiprocessor systems are equivalent to small-scale distributed systems, for
which a suitable programming model is required. We privilege component-based
software engineering practices to tackle this point, but this is not the subject of
this paper. For the second point, it is unconceivable to worsen the fragmentation
problem by introducing new tools for each variant of the embedded processors.
We propose to extend the platform virtualization approaches already adopted
in environments such as Java and .NET, to offer a homogeneous software devel-
opment framework targeting both the host and the embedded subsystems.

Specifically, we need a processor-independent format, well suited for software
deployment on a wide variety of embedded systems, which can be efficiently
compiled just-in-time (JIT), and which can interact at no additional cost with
existing native environments, such as native optimized libraries, as well as with
existing managed frameworks like Java and .NET. We have selected a subset
of the CLI standard [7,13], better known as Microsoft .NET, and the goal of
this paper is to illustrate the experimental setup that we have used to validate
this choice. Note that one could just serialize the internal representation of a
compiler, but we believe that CLI provides a number of significant advantages:

– it has been standardized, which means that its definition is clear and public,
and it is not subject to changes without notice;
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– this format is directly executable on various platforms;
– there is a lot of interest around this format, for example Microsoft .NET,

Mono [3] or DotGNU [1], just to name a few.

Given our primary target of performance scalability, our most important require-
ment is the quality of the final code generated by the JIT, and the code size as a
second priority. Besides, given the target domain, i.e. compute intensive code on
deeply embedded processors, we also constrain ourselves to the traditional pro-
gramming language used in this context, which is C (we will certainly consider
C++ as well later). Finally, given the real-time nature of our applications, we
avoid for the time being dynamic configurations where the JIT can be invoked
while the application is already running. Instead we pre-compile the input CLI
code on the target embedded device in one of the following configurations:

1. at application install-time, i.e. the user downloads an application in CLI
format and during the installation procedure the JIT is invoked to translate
the CLI into native code, which is then stored into the device persistent
memory once and for all; or

2. at load time, i.e. the device keeps the application in its permanent memory
in CLI format; each time the application is executed it gets translated by
the JIT into native code to the main memory.

Like in any platform virtualization environment, the compilation process is
split in two phases: the generation of the processor-independent format, occur-
ring in the development platform, and the JIT compilation which occurs on the
device after the deployment of the applications in a processor-independent for-
mat. For the first compilation phase we have chosen the GCC compiler because
of its wide adoption and because of the relatively recent introduction of the
GIMPLE middle-level internal representation, which we prove in this paper to
be well suited for the purpose of generating very efficient CLI bytecode. For
the JIT part, we are developing our JIT infrastructure targeting our embedded
processor family, as well as the ARM microcontroller, with very encouraging
results. However the JIT is still work in progress, so we do not illustrate it in
this paper. Instead, in order to validate our choice of CLI , we have developed an
experimental GCC CLI front-end, so that we can re-inject the generated CLI
bytecode back into GCC, and complete the compilation process down to native
code, whose quality is compared to the code obtained by the normal GCC flow
(see Figure 1). In so doing we prove that using CLI as an intermediate processor-
independent deployment format does not degrade performance. We also report
the CLI code size obtained with our GCC CLI generator, which proves to be
competitive with respect to native code.

Finally, CLI provides the right primitives for interoperability (pinvoke): once
the bytecode is JIT-ted, it can be either statically or dynamically linked with
native libraries without any specific restriction or penalty with respect to native
code compiled with a normal static flow.

The following section describes our implementation. Section 3 presents our
experimental results and analyses. We review some related works in Section 4
before concluding.
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Fig. 1. Experimental setup

2 Implementation

We implemented our experiments inside the GCC compiler [8] for several rea-
sons: the source code is freely available, it is quite robust, being the outcome of
hundreds of developers over fifteen years; it already supports many input lan-
guages and target processors; and there is a large community of volunteers and
industrials that follow the developments. Its tree-based middle end is also partic-
ularly well suited both to produce optimized CIL bytecode and to be regenerated
starting from CIL bytecode.

In the first step, GCC is configured as a CLI back-end [4]: it compiles C source
code to CLI . A differently configured GCC then reads the CLI binary and acts
as a traditional back-end for the target processor. The CLI front-end necessary
for this purpose has been developed from scratch for this research [19].

2.1 GCC Structure

The structure of GCC is similar to most portable compilers. A front-end, different
for each input language, reads the program and translates it into an abstract
syntax tree (AST). The representation used by GCC is called GIMPLE [18].
Many high-level, target independent, optimizations are applied to the AST (dead
code elimination, copy propagation, dead store elimination, vectorization, and
many others). The AST is then lowered to another representation called register
transfer language (RTL), a target dependent representation. RTL is run through
low-level optimizations (if-conversion, combining, scheduling, register allocation,
etc.) before the assembly code is emitted. Figure 2 depicts this high-level view
of the compiler. Note that some languages first produce a representation called
GENERIC , which is then lowered to GIMPLE [18,23].

2.2 CLI Code Generator

GCC gets the information about the target from a target machine model. It
consists of a machine description which gives an algebraic formula for each of
the machine’s instructions, in a file of instruction patterns used to map GIMPLE
to RTL and to generate the assembly and in a set of C macro definitions that
specify the characteristic of the target, like the endianness, how registers are
used, the definition of the ABI, the usage of the stack, etc.
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Fig. 2. Structure of the GCC compiler

This is a very clean way to describe the target, but when the compiler needs
information that is difficult to express in this fashion, GCC developers have not
hesitated to define an ad-hoc parameter to the machine description. The machine
description is used throughout RTL passes.

RTL is the lowest level GCC intermediate representation; in RTL

– each instruction is target-specific and it describes its overall effects in terms
of register and memory usage;

– registers may be physical as well as virtual registers, freely inter-mixed (until
register allocation pass is run, which leaves no virtual registers);

– memory is represented through an address expression and the size of the
accessed memory cell;

– finally, RTL has a very low-level representation of types, which are called
machine modes. They correspond to the typical machine language repre-
sentation of types, which only includes the size of the data object and the
representation used for it.

CIL bytecode is much more high-level than a processor machine code. CIL is
guaranteed by design to be independent from the target machine and to allow
effective just-in-time compilation through the execution environment provided
by the Common Language Runtime. It is a stack-based machine, it is strongly
typed and there is no such a concept as registers or frame stack; instructions
operate on an unbound set of locals (which closely match the concept of local
variables) and on elements on top of an evaluation stack.

We initially considered writing a standard GCC back-end. However. much of
the high-level information needed to dump CLI is lost at RTL level, whereas
there is a good semantic fit between GIMPLE and CLI . It seemed awkward to
augment a lowered representation with high-level information.

Thus, we decided to stop the compilation flow at the end of the middle-end
passes without going through any RTL pass, and to emit CIL bytecode from
GIMPLE representation (see Figure 2).

We wrote three specific CLI passes:
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– CLI simplification: most GIMPLE tree codes closely match what is repre-
sentable in CIL, this pass expands the ones that do not follow this rule. The
output of the pass is still GIMPLE but it does not contain tree codes that
the emission pass do not handle. The pass can be executed multiple times to
avoid putting constraints on other passes. It is idempotent by construction.

– Removal of temporary variables: In GIMPLE , expressions are broken down
into a 3-address form, using temporary variables to hold intermediate val-
ues. This pass merges GIMPLE expressions to eliminate such temporary
variables. Intermediate results are simply left on the evaluation stack. This
results in cleaner code and a lower number of locals.

– CLI emission: this pass receives a CIL-simplified GIMPLE form as input
and it produces a CLI assembly file as output.

With these three passes and a minimal target machine description we are able
to support most of C99 1 [14]. More details of the implementation can be found
in [5], and the code is freely available [4].

2.3 CLI to Native Translation

We have implemented a GCC front-end only for a subset of the CLI language,
pragmatically dictated by the need to compile the code produced by our back-
end. However, nothing in the design of the front-end forbids us to extend it to
a more complete implementation in the future. The supported features include
most base CIL instructions, direct and indirect calls to static methods, most CIL
types, structures with explicit layout and size (very frequently used by our back-
end), constant initializers, limited access to native platform libraries (pInvoke)
support and other less frequently used features required by our back-end. On
the other hand, unsupported features include object model related functionality,
exceptions, garbage collection, reflection and support for generics.

Our front-end is analogous to the GNU Compiler for Java (GCJ) [9] which
compiles JVM bytecodes to native code (GCJ can also directly compile from
Java to native code without using bytecodes). Both front-ends perform the work
that is usually done by a JIT compiler in traditional virtual machines. But
unlike JIT compilers, these front-ends are executed ahead of time. Hence, they
can use much more time-consuming optimizations to generate better code, and
the startup overhead of the JIT compilation is eliminated. In particular, our
front-end compiles CIL using the full set of optimizations available in GCC.

The front-end can compile one or more CLI assemblies into an object file.
The assembly is loaded and its metadata and code streams are parsed. Instead
of writing our own metadata parser, we rely on Mono [3] shared library. Mono
provides a comprehensive API to handle the CLI metadata and it has been easy
to extend where it was lacking some functionality. Hence, the front-end only has
to parse the code stream of the methods to compile.

1 In the interest of time, we skipped a few features that were uninteresting for our
immediate purposes, for example complex numbers.
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Once the assembly has been loaded, the front-end builds GCC types for all the
CLI types declared or referenced in the assembly. To do this, some referenced
assemblies may need to be loaded too.

After building GCC types, the front-end parses the CIL code stream of each
method defined in the assembly in order to build GCC GENERIC trees for them.
Most CIL operations are simple and map naturally to GENERIC expressions
or to GCC built-in functions. GENERIC trees are then translated to the more
strict GIMPLE representation (gimplified) and passed to the next GCC passes
to be optimized and translated to native code.

Finally, the front-end creates a main function for the program which performs
any required initialization and calls the assembly entry point.

Currently, the main source of limitations in the implementation of a full CIL
front-end is the lack of a run-time library which is necessary to implement vir-
tual machine services like garbage collection, dynamic class loading and reflec-
tion. These services are not required in order to use CIL as an intermediate
language for compiling C or other traditional languages. Also, CIL programs
usually require a standard class library which would need to be ported to this
environment. The effort to build this infrastructure was outside the scope of our
experiment.

2.4 Tools

From the user’s point of view, the toolchain is identical to a native toolchain.
We essentially use an assembler and a linker. As expected, the assembler takes
the CLI in textual form and generates an object representation. The linker takes
several of those object files and produces the final CLI executable.

At this point we rely on tools provided by the projects Mono [3] and Portable.-
NET [1]. We plan to switch to a Mono only solution, to limit the number of
dependences we have on other projects, and to avoid using the non-standard file
format used by Portable.NET for object files.

3 Experiments and Results

3.1 Setup

This section describes the experimental setup we used to compare the code gen-
erated through a traditional compilation flow with the one generated using CLI
as intermediate representation. GCC 4.1 is the common compilation technol-
ogy for all the experiments; of course, different compilation flows use different
combinations of GCC front-ends and back-ends. The compilation flows under
examination are:

– configuration a: C to native, -O2 optimization level. In other words, this is
the traditional compilation flow, it is used as a reference to compare against.

– configuration b: C to CLI at -O2 optimization level, followed by CLI to na-
tive, also at -O2. This gives us an upper bound of the achievable performance
when going through CLI .
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– configuration c: C to CLI , -O2 optimization level, followed by CLI to native,
-O0 optimization level for GIMPLE passes and -O2 for RTL ones. This
is still a CLI -based compilation flow, in which optimizations at GIMPLE
level are skipped in the final compilation step. Even though it seems a bit
contorted, this setup is important to evaluate up to which degree high-level
optimizations can be performed only in the first step. As a matter of fact, in
dynamic environments the second compilation step may be replaced by just-
in-time compilation, which is typically more time constrained and is likely
to apply only target-specific optimizations.

The benchmarks come from several sources: MediaBench [16] and MiBench [11],
others are internally developed. We focused on applications or computational
kernels that are relevant to our field (audio, video, cryptography, etc.) We also
had to eliminate some benchmarks that had execution times close to the resolu-
tion of the timer and thus were not reliable. Table 1 gives the list of benchmarks
along with a short description.

Table 1. Benchmarks used in our experiments

benchmark description benchmark description
ac3 AC3 audio decoder mp4dec MPEG4 decoder
adpcm ADPCM decoder mpeg1l2 MPEG1 audio layer 2 decoder
adpcmc ADPCM encoder mpeg2enc MPEG2 encoder
render image rendering pipeline divx DivX decoder
compress Unix compress utility sha Secure Hash Algorithm
crypto DES, RSA and MD5 video video player
dijkstra shortest path in network yacr2 channel routing
ft minimum spanning tree bitcount count bits in integers
g721c G721 encoder cjpeg JPEG encoder
g721d G721 decoder tjpeg optimized for embedded
ks graph partitioning crc32 32-bit CRC polynomial
mp2avswitch MPEG2 intra loop encoder + MPEG1 layer 2 audio encoder

We ran our experiments on two targets. The first one is an PC Intel Pentium
III clocked at 800 MHz, with 256 Mbytes of RAM, running Linux 2.6. The second
one is a board developed by STMicroelectronics named STb7100 [24]. The host
processor is a SH-4 clocked at 266 MHz. It features a 64-Mbits flash memory and
64-Mbytes of DDR RAM. The board itself is actually a complete solution single-
chip, low-cost HD set-top box decoder for digital TV, digital set-top box or cable
box. However, in these experiments we only take advantage of the host processor.

3.2 Experiments

To evaluate the relevance of the CLI as a deployment format, we ran two ex-
periments. The first one evaluates the size of the code that needs to be shipped
on a device: on one hand the CLI file, on the other hand the respective native



138 M. Cornero et al.

Table 2. Code size results for CLI , x86 and SH-4 (in bytes)

CLI x86 SH-4
benchmark size size % size %
ac3 86016 63381 -26.3% 66407 -22.8%
adpcm 8704 11160 28.2% 13974 60.5%
adpcmc 8704 10943 25.7% 13621 56.5%
render 144384 114988 -20.4% 122232 -15.3%
compress 16384 18555 13.3% 23567 43.8%
crypto 73216 80796 10.4% 87040 18.9%
dijkstra 7680 11208 45.9% 13990 82.2%
ft 18944 21359 12.7% 23868 26.0%
g721c 19456 18226 -6.3% 21392 10.0%
g721d 19456 18159 -6.7% 21321 9.6%
ks 16896 16196 -4.1% 22034 30.4%
mp2avswitch 272384 202446 -25.7% 198486 -27.1%
mp4dec 67584 53824 -20.4% 57636 -14.7%
mpeg1l2 104960 86279 -17.8% 84863 -19.1%
mpeg2enc 88576 85415 -3.6% 185632 109.6%
divx 67584 49134 -27.3% 55869 -17.3%
sha 7680 10960 42.7% 13858 80.4%
video 1036288 275819 -73.4% 264067 -74.5%
yacr2 37376 34441 -7.9% 39653 6.1%
bitcount 9728 12678 30.3% 15912 63.6%
cjpeg 226304 153161 -32.3% 158330 -30.0%
tjpeg 54272 52826 -2.7% 56682 4.4%
crc32 8704 10794 24.0% 13428 54.3%
average -1.8% 18.9%

binaries. In Table 2, the second column gives the size of the CLI executable. The
following two columns give the size of the x86 binary, in absolute value, and as
a percentage of the CLI . The respective numbers for SH-4 are given in the last
two columns. Those numbers are graphically represented on Figure 3, left bar
for x86 and right bar for SH-4 .

The second experiment is about performance. Since we break the compilation
flow, one might expect that the compiler loses information in the back-end, and
thus performance. Table 3 shows the execution times (in seconds, averaged over
five runs) of our set of benchmarks compiled with the three compilation flows
for x86 and SH-4 .

3.3 Analysis

The first comment we make on code size is that, even though x86 and SH-4
have quite dense instruction sets, the CLI binary is often smaller. The case of
mpeg2enc on SH-4 is extreme and comes from the fact that the native compiler
decided to statically link part of the math library to take advantage of specialized
trigonometric routines. Several benchmarks see their code size increased by the
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Fig. 3. Native code size (config. a) wrt. CLI . Left bar is x86 , right bar is SH-4 .

Table 3. Performance results on x86 and SH-4 (in seconds)

x86 SH-4
benchmark a b c a b c
ac3 0.17 0.18 0.19 0.68 0.71 0.71
adpcm 0.04 0.04 0.04 0.16 0.17 0.17
adpcmc 0.07 0.07 0.06 0.27 0.27 0.27
render 2.15 1.97 2.08 9.87 8.85 8.86
compress 0.03 0.03 0.03 0.50 0.48 0.47
crypto 0.12 0.14 0.15 0.52 0.51 0.53
dijkstra 0.20 0.22 0.22 1.32 1.34 1.34
ft 0.35 0.35 0.29 2.64 2.44 2.62
g721c 0.47 0.46 0.48 1.86 1.66 1.69
g721d 0.43 0.46 0.42 1.54 1.73 1.64
ks 28.00 29.27 30.32 123.44 144.04 140.27
mp2avswitch 2.55 2.55 2.67 12.09 11.55 11.78
mp4dec 0.05 0.06 0.06 0.33 0.35 0.34
mpeg1l2 0.67 0.64 0.63 1.77 1.96 1.95
mpeg2enc 0.76 0.50 0.79 3.37 3.50 4.19
divx 0.39 0.41 0.41 1.27 1.25 1.25
sha 0.30 0.30 0.37 1.98 2.17 2.17
video 0.10 0.10 0.10 0.36 0.37 0.37
yacr2 0.67 0.65 0.70 3.16 3.18 3.08
bitcount 0.03 0.03 0.03 0.13 0.11 0.11
cjpeg 1.72 1.72 1.70 7.73 7.53 7.80
tjpeg 0.48 0.44 0.45 3.05 2.90 3.02
crc32 0.57 0.58 0.55 1.53 1.48 1.52
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x86 SH-4

Fig. 4. Impact on performance of the CLI based compilation (config a vs. b)

introduction of SH-4 nops to ensure proper alignment of basic blocks and func-
tions, required to achieve high performance of this architecture.

The worst case comes from the benchmark video, where CLI is roughly 74%
larger than x86 or SH-4 : two thirds of the CLI code is made of initializers of
arrays of bitfields, for which we emit very naive code, one bitfield at a time. A
smarter code emission (which we have planned, but not yet implemented) will
combine bitfields to generate the values in-place, getting rid of most initializers.

Excluding the pathological cases, video for both architectures and mpeg2enc
for SH-4 , the SH-4 (resp. x86 ) is 19% (resp. 2%) larger than CLI .

There are other opportunities for improvements: in some cases, we have to
generate data segments for both little-endian and big-endian architectures. It is
likely that, at deployment-time, the endianness is known 2. In this case, the use-
less data definition could be dropped. Another reduction can come from the fact
that CLI retains all the source code function and type names in the metadata.
In the absence of reflection, which is true for the C language, those names can
be changed to much shorter ones. Using only lower case and upper case letters,
digits and underscore, one can encode (2 × 26 + 10 + 1)2 = 5329 names on two
characters, drastically reducing the size of the string pool.

Our experiments confirm a previous result [6] that CLI is quite compact, sim-
ilar to x86 and roughly 20% smaller (taking into account the preceding remarks)
than SH-4 , both notoriously known for having dense instruction sets.

On the performance side, consider the Figure 4 which represents the perfor-
mance of the binaries generated by the configuration b (through CLI , at -O2)
with respect to a (classical flow also at -O2). It measures the impact on per-
formance of using the intermediate representation. The code generated through
CLI in configuration b is, on average, barely slower than a. In other words, us-
ing -O2 optimization level in all cases causes a 1.5% performance degradation
on x86 and 0.6% on SH-4 . The worst degradation is also contained, with -18%
for crypto on x86 and -17% for ks on SH-4 .

2 Some platforms are made of processors of both endiannesses. It could be advanta-
geous to migrate the code from one to another and thus to keep both definitions.
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x86 SH-4

Fig. 5. Impact of high-level optimizations on performance (config b vs. c)

Understanding the reasons of variations is quite difficult. Even though the
compiler infractucture is the same, each target triggers the heuristics in different
ways. For example, in the case of bitcount, a inner loop has been unrolled by
the SH-4 compiler and not by the x86 compiler, even though the input file is
identical. This leads to the difference in performance seen on Figure 4.

Figure 5 compares the two configurations that use CLI , evaluating the need
to rerun high-level optimizations in the CLI to native translation. The average
slowdown is 1.3% on SH-4 and 4% on x86 . Excluding the extreme case mpeg2enc,
they are respectively 0.4% and 1.3%. Most performance degradations are within
5% on the SH-4 and within 10% on the x86 . This is a good news because it means
that there is little need to run high-level optimizations on the CLI executable, it
is enough to run the back-end (target specific) optimizer. Some poor results are
explained by inefficient CLI patterns. Array accesses are expressed in GIMPLE
by a single node, e.g. a[i]. There is no such abstraction in CLI (at least for
non managed data). We are forced to emit the code sequence corresponding to
*(@a+sizeof elem*i). When a loop contains several array accesses, we repeat
the address computation, but there is no later code cleanup. In configuration
b, the high level loop optimizer moves loop invariants and rewrites induction
variables. In configuration c, this does not happen, leaving the back-end with
poor quality code. This is obviously an inefficiency we will fix.

Keep also in mind that those experiments rely on a prototype implementation
of the CLI to native code generator. Emphasis has been put on correctness, not
yet on quality. Even though the CLI generator is in a much better state, we have
identified a number of areas where it could be improved. This lack of tuning also
contributes to the deviation observed in the results.

4 Related Work

4.1 Not CLI -Based

In many aspects, the Java framework [17] is the precursor of CLI . Similarly to
CLI , Java defines a bytecode based virtual machine, a standard library and it
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offers services like garbage collection, multi-threading, etc. Java is widely used
in embedded systems in order to provide complementary capabilities, like games
for cellphones or TV guides for set-top-boxes. However, it is not adapted for the
core software for several reasons.

Java typically incurs a significant performance overhead, not acceptable for
performance critical applications; this is mostly because it does not offer install-
time compilation, and also because it does not provide the lower-level abstraction
the way C does: pointer arithmetic, no garbage collection, no array bound checks,
etc. The Java language [10] is high-level and object-oriented language. Porting
source code from C to Java typically involves significant changes that may even
lead to a full redesign of the application.

AppForge used to be a company selling Crossfire, a plugin for Microsoft Visual
Studio .NET that converted the CLI bytecode to their own proprietary bytecode.
Developers could use VB.NET or C# to develop applications for various mobile
devices. The bytecode is interpreted and is not meant to run the performance
critical parts of the application, which are still executed natively.

4.2 CLI -Based

The CIL bytecode was first introduced by Microsoft .NET. It has also been
standardized by ECMA [7] and ISO [13]. CIL has been designed for a large
variety of languages, and Microsoft provides compilers for several of them: C++,
C#, J#, VB.NET. The C language, though, cannot be compiled to CIL.

Mono [3] is an open source project sponsored by Novell. It provides the neces-
sary software to develop and run .NET applications on Linux, Solaris, Mac OS
X, Windows, and Unix. It is compatible with compilers for many languages [2].

DotGNU Portable.NET [1] is another implementation of the CLI , that in-
cludes everything you need to compile and run C# and C applications that use
the base class libraries. It supports various processors and operating systems.

Lcc is a simple retargetable compiler for Standard C. In [12], Hanson describes
how he targeted lcc to CLI . He covered most of the language and explains the
reasons for his choices, and the limitations. The port was meant more as an
experiment to stress lcc itself than to produce a robust compiler.

Singer [22] describes another approach to generate CLI from C, using GCC.
While based on the same compiler, it differs in the implementation: he starts from
the RTL representation and suffers from the loss of high level information. As
the title suggests, this is a feasibility study that can handle only toy benchmarks.

Löwis and Möller [26] developed a CLI front-end for GCC with a different
goal: while we focus on very optimized C code, they aim at running all the
features of CLI on the Lego Mindstorm platform [25]. However, they currently
support a fraction of the CLI features and they can run only small programs.

Very similar to our work is another CLI port of GCC done by a student as
part of the Google Summer of Code and sponsored by the Mono project [15].
This work is still very preliminary and stopped at the end of the internship.

Some applications may have a long startup time because they are linked
against large libraries. Even if the application requires only few symbols, the
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runtime system might scan a large portion of the library. This also increases the
memory footprint off the application. Rabe [20] introduces the concept of self-
contained assembly to address these problems. He builds a new CLI assembly
that merges all previous references and does not depend on any other library.

While we priviledged programming embedded systems in C, using CLI as an
intermediate format, Richter et al. [21] proposed to extend CLI with attributes
to be able to express low-level concepts in C#. They encapsulate in CLI classes
the notions of direct hardware access, interrupt handler and concurrency.

5 Conclusion

We have illustrated the motivations of our platform virtualization work and the
experimental framework that we have used for validating the choice of CLI as
an effective processor-independent deployment format for embedded systems, in
terms of code size and performance. In addition we have described the implemen-
tation of our open source CLI generator based on GCC4. The presented results
show that using CLI as an intermediate deployment format does not penalize
performance, and that code size is competitive with respect to native code.

We are currently working on optimized JIT compilers for our target embedded
processors as well as for the ARM microcontroller. We are also investigating
how to optimally balance the static generation of highly effective CLI byte-
code, complemented with additional information resulting from advanced static
analyses, with the dynamic exploitation of that information by our JIT compilers
in order to generate highly optimized native code as quickly as possible in the
target embedded devices.
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Abstract. This paper describes the development and compiler utiliza-
tion of variable length instruction set extensions to an existing
high-performance, 32-bit VLIW DSP processor. We describe how the
instruction set extensions (1) reduce code size significantly, (2) are bi-
nary compatibile with older object code, (3) do not require the proces-
sor to switch “modes”, and (4) are exploited by a compiler. We describe
the compiler strategies that utilize the new instruction set extensions to
reduced code size. When compiling our benchmark suite for best perfor-
mance, we show that our compiler uses the variable length instructions
to decreases code size by 11.5 percent, with no reduction in performance.
We also show that our implementation allows a wider code size and per-
formance tradeoff range than earlier versions of the architecture.

1 Introduction

VLIW (very long instruction word) processors are well-suited for embedded sig-
nal and video processing applications, which are characterized by mathematically
oriented loop kernels and abundant ILP (instruction level parallelism). Because
they do not have hardware to dynamically find implicit ILP at run-time, VLIW
architectures rely on the compiler to statically encode the ILP in the program
before its execution [1]. Since ILP must be explicitly expressed in the program
code, VLIW program optimizations often replicate instructions, increasing code
size. While code size is a secondary concern in the computing community over-
all, it can be significant in the embedded community. In this paper we present
an approach for reducing code size on an embedded VLIW processor using a
combination of compiler and instruction encoding techniques.

VLIW processors combine multiple instructions into an execute packet. All
instructions in an execute packet are issued in parallel. Code compiled for a
VLIW will often include many NOP instructions, which occur because there
is not enough ILP to completely fill an execute packet with useful instructions.
Since code size is a concern, instruction encoding techniques have been developed
to implicitly encode VLIW NOP instructions [2]. Another approach to reduce
code size is to store a compressed image of the VLIW program code in external
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memory, and use run-time software or hardware to decompress the code as it
is executed or loaded into a program cache [3,4]. Other approaches have used
variable length instruction encoding techniques to reduce the size of execute
packets [5]. Finally, recognizing that code size is often the priority in embedded
systems, other approaches use processor modes with smaller opcode encodings
for a subset of frequently occurring instructions. Examples of mode-based archi-
tectures are the ARM Limited ARM architecture’s Thumb mode [6,7] and the
MIPS Technologies MIPS32 architecture’s MIPS16 mode [8].

In this paper, we discuss a hybrid approach for reducing code size on a VLIW,
using a combination of compilation techniques and compact instruction encod-
ings. We provide an overview of the TMS320C6000 (C6x) family of VLIW proces-
sors and how instructions are encoded to reduce the code size. We then describe
a unique modeless binary compatible encoding for variable length instructions
that has been implemented on the TMS320C64+ (C64+) processor, which is the
latest member of the C6x processor family. We describe how, consistent with the
VLIW architecture philosophy, the compact instruction encoding is directed by
the compiler. We discuss how the different compiler code size strategies lever-
age the compact instructions to reduce program code size and balance program
performance. Finally, we conclude with results showing how program code size
is reduced on a set of typical DSP applications. We also show that our imple-
mentation allows a significantly wider range of size and performance tradeoffs
versus earlier versions of the architecture.

2 The TMS320C6000 VLIW DSP Core

The TMS320C62x (C62) is a fully pipelined VLIW processor, which allows eight
new instructions to be issued per cycle. All instructions can be optionally guarded
by a static predicate. The C62 is the base member of the Texas Instruments’ C6x
family (Fig. 1), providing a foundation of integer instructions. It has 32 static
general-purpose registers, partitioned into two register files. A small subset of
the registers may be used for predication. The TMS320C64x (C64) builds on the
C62 by removing scheduling restrictions on existing instructions and providing
additional instructions for packed-data/SIMD (single instruction multiple data)
processing. It also extends the register file by providing an additional 16 static
general-purpose registers in each register file [9].

The C6x is targeted toward embedded DSP (digital signal processing) ap-
plications, such as telecom and image processing. These applications spend the
bulk of their time in computationally intensive loop nests which exhibit high de-
grees of ILP. Software pipelining, a powerful loop-based transformation, is key
to extracting this parallelism and exploiting the many functional units on the
C6x [10].

Each instruction on the C6x is 32-bit. Instructions are fetched eight at a
time from program memory in bundles called fetch packets. Fetch packets are
aligned on 256-bit (8-word) boundaries. The C6x architecture can execute from
one to eight instructions in parallel. Parallel instructions are bundled together
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Fig. 1. TMS320C6000 architecture block diagram

Fig. 2. Typical 32-bit instruction encoding format

into an execute packet. As fetch packets are read from program memory, the
instruction dispatch logic extracts execute packets from the fetch packets. All of
the instructions in an execute packet execute in parallel. Each instruction in an
execute packet must use a different functional unit.

The execute packet boundary is determined by a bit in each instruction called
the parallel-bit (or p-bit). The p-bit (bit 0) controls whether the next instruction
executes in parallel.

On the C62, execute packets cannot span a fetch packet boundary. Therefore,
the last p-bit in a fetch packet is always set to 0, and each fetch packet starts a
new execute packet. Execute packets are padded with parallel NOP instructions
by the assembler to align spanning execute packets to a fetch packet boundary.
The C64 allows execute packets to span fetch packet boundaries with some
minimal restrictions, thus reducing code size by eliminating the need for parallel
padding NOP instructions.

Except for a few special case instructions such as the NOP, each instruction
has a predicate encoded in the first four bits. Figure 2 is a generalization of the
C6x 32-bit three operand instruction encoding format. The predicate register is
encoded in the condition (creg) field, and the z-bit encodes the true or not-true
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sense of the predicate. The dst, src2, and src1 fields encode operands. The x-bit
encodes whether src2 is read from the opposite cluster’s register file. The op field
encodes the operation and functional unit. The s-bit specifies the cluster that
the instruction executes on.

3 C64+ Compact Instructions

The C64+ core has new instruction encodings that (1) reduce program size, (2)
allow binary compatibility with older object files, (3) and do not require the
processor to switch modes to access the new instructions encodings. In addition,
the existing C/C++ compiler exploits these new instruction encodings without
extensive modification.

3.1 Compact 16-bit Instructions

A 16-bit instruction set was developed in which each 16-bit instruction is a com-
pact version of an existing 32-bit instruction. All existing control, data path, and
functional unit logic beyond the decode stage remains unchanged with respect
to the 16-bit instructions. The 16-bit and 32-bit instructions can be mixed.

The ability to mix 32- and 16-bit instructions has several advantages. First, an
explicit instruction to switch between instruction sets is unnecessary, eliminating
the associated performance and code size penalty. Second, algorithms that need
more complex and expressive 32-bit instructions can still realize code size savings
since many of the instructions can be 16-bit. Finally, the ability to mix 32-
and 16-bit instructions in the C64+ architecture frees the compiler from the
complexities associated with a processsor mode.

The 16-bit instructions selected are frequently occurring 32-bit instructions
that perform operations such as addition, subtraction, multiplication, shift, load,
and store. By necessity, the 16-bit instructions have reduced functionality. For
example, immediate fields are smaller, there is a reduced set of available registers,
the instructions may only operate on one functional unit per cluster, and some
standard arithmetic and logic instructions may only have two operands instead
of three (one source register is the same as the destination register). All 16-bit
instructions do not have a condition operand and execute unconditionally except
for certain branch instructions.

The selection and makeup of 16-bit instructions was developed by rapidly
prototyping the existing compiler, compiling many different DSP applications,
and examining the subsequent performance and code size. In this way, we were
able to compare and refine many different versions of the 16-bit instruction
set. Due to design requirements of a high performance VLIW architecture,
the C6x 32-bit instructions must be kept on a 32-bit boundary. Therefore,
the 16-bit instructions occur in pairs in order to honor the 32-bit instruction
alignment.
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Fig. 3. C64+ fetch packet formats

Fig. 4. Compact instruction header format

3.2 The Fetch Packet Header

The C64+ has a new type of fetch packet that encodes a mixture of 16-bit
and 32-bit instructions. Thus, there are two kinds of fetch packets: A standard
fetch packet that contains only 32-bit instructions and a header-based fetch
packet that contains a mixture of 32- and 16-bit instructions. Figure 3 shows
a standard fetch packet and an example of a header-based fetch packet. Fetch
packet headers are detected by looking at the first four bits of the last word in a
fetch packet. A previously unused creg/z value indicates that the fetch packet is
header-based. The header-based fetch packet encodes how to interpret the bits
in the rest of the fetch packet. On C64+, execute packets may span standard
and header-based fetch packets.

Figure 4 shows the layout of the fetch packet header. The predicate field used
to signify a fetch packet header occupies four bits (bits 28-31). There are seven
layout bits (bits 21-27) that designate if the corresponding word in the fetch
packet is a 32-bit instruction or a pair of 16-bit instructions. Bits 0-13 are p-bits
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for 16-bit instructions. For a 32-bit instruction, the corresponding two p-bits in
the header are not used (set to zero). The remaining seven expansion bits (bits
14-20) are used to specify different variations of the 16-bit instruction set.

The expansion bits and p-bits are effectively extra opcode bits that are at-
tached to each instruction in the fetch packet. The compressor software (dis-
cussed in section 4) encodes the expansion bits to maximize the number of
instructions in a fetch packet.

The protected load instruction bit (bit 20) indicates if all load instructions
in the fetch packet are protected. This eliminates the NOP that occurs after a
load instruction in code with limited ILP, which is common in control oriented
code. The register set bit (bit 19) indicates which set of eight registers is used
for three operand 16-bit instructions. The data size field (bits 16-18) encodes
the access size (byte, half-word, word, double-word) of all 16-bit load and store
instructions. The branch bit (bit 15) controls if branch instructions or certain
S-unit arithmetic and shift instructions are available. Finally, the saturation bit
(bit 14) indicates if many of the basic arithmetic operations saturate on overflow.

3.3 Branch and Call Instructions

Certain branch instructions appearing in header-based fetch packets can reach
half-word program addresses. Ensuring that branch instructions can reach in-
tended destination addresses is handled by the compressor software.

A new 32-bit instruction, CALLP, can be used to take the place of a B (branch)
instruction and an ADDKPC (set up return address) instruction. However, un-
like branch instructions, where the five delay slots must be filled with other
instructions or NOPs, the CALLP instruction is “protected,” meaning other
instructions cannot start in the delay slots of the CALLP. The use of this in-
struction can reduce code size up to six percent on some applications with a
small degradation in performance.

4 The Compressor

When compiling code for C64+, an instruction’s size is determined at assembly-
time. (This is possible because each 16-bit instruction has a 32-bit counterpart.)
The compressor runs after the assembly phase and is responsible for converting
as many 32-bit instructions as possible to equivalent 16-bit instructions. The
compressor takes a specially instrumented object file (where all instructions are
32-bit), and produces an object file where some instructions have been converted
to 16-bit instructions. Figure 5 depicts this arrangement. Code compression could
also be performed in the linker since the final addresses and immediate fields
of instructions with relocation entries are known and may allow more 16-bit
instructions to be used.

The compressor also has the responsibility of handling certain tasks that can-
not be performed in the assembler because the addresses of instructions will
change during compression. In addition, the compressor must fulfill certain ar-
chitecture requirements that cannot be easily handled by the compiler. These
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Fig. 5. Back-end compiler and assembler flow depicting the compression of instructions

requirements involve pairing 16-bit instructions, adding occasional padding to
prevent a stall situation, and encoding the fetch packet header when 16-bit in-
structions are present.

Compression is an iterative process consisting of one or more compression
iterations. In each compression iteration the compressor starts at the beginning of
the section’s instruction list and generates new fetch packets until all instructions
are consumed. Each new fetch packet may contain eight 32-bit instructions (a
regular fetch packet), or contain a mixture of 16- and 32-bit instructions (a
header-based fetch packet).

The compressor must select an overlay which is an expansion bit combina-
tion used for a fetch packet that contains 16-bit instructions. There are several
expansion bits in the fetch packet header that indicate how the 16-bit instruc-
tions in the fetch packet are to be interpreted. For each new fetch packet, the
compressor selects a window of instructions and records for each overlay which
instructions may be converted to 16-bit. It then selects the overlay that packs
the most instructions in the new fetch packet. Figure 6 outlines the high-level
compressor algorithm.

The compressor looks for several conditions at the end of a compression itera-
tion that might force another iteration. When the compressor finds none of these
conditions, no further compression iterations are required for that section. Next,
we describe one of the conditions that forces another compression iteration.

Initially, the compressor optimistically uses 16-bit branches for all forward
branches whose target is in the same file and in the same code section. These
16-bit branches have smaller displacement fields than their 32-bit counterparts
and so may not be capable of reaching their intended destination. At the end of
a compression iteration, the compressor determines if any of these branches will
not reach their target. If so, another compression iteration is required and the
branch is marked indicating that a 32-bit branch must be used.

During a compression iteration, there is often a potential 16-bit instruction
with no other potential 16-bit instruction immediately before or after to com-
plete the 16-bit pair. In this case, the compressor can swap instructions within
an execute packet to try to make a pair. Since the C6x C/C++ compiler often
produces execute packets with multiple instructions, the swapping of instruc-
tions within an execute packet increases the conversion rate of potential 16-
bit instructions. The compressor does not swap or move instructions outside of
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compressor(){
for each code section in object file {

do {
compress_section()
check legality of section and note any problems

} while (section has one or more problems)

finalize instructions
adjust debug, symbol, and relocation info
write compressed section

}
finalize and emit the object file

}

compress_section(){

idx = 0; // idx denotes start of "window"

while (idx < number_of_instructions) {
window_sz = set_window_size();

for (each instruction in window)
for (each overlay)

// 128 possible combinations of expansion bits
record if instruction can be 16-bit

for (each overlay) {
record how a fetch packet encodes
// Note that the best packing may be a regular fetch packet
<best_mode, best_insts_packed> = determine_best_overlay();

}

idx += best_insts_packed;
}

}

Fig. 6. High-level compressor algorithm

execute packets, nor change registers of instructions in order to improve com-
pression. The compressor will always converge on a solution, typically after five
or fewer compression iterations.

5 Compiler Strategies

The C64+ architecture’s novel implementation of variable length instructions
provides unique opportunities for compiler-architecture collaboration. The pri-
mary benefit is that it provides flexibility to users for selecting and managing
code-size and performance tradeoffs while maintaining full backward compati-
bility for established code bases.
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In our implementation, the compressor has the responsibility for packing in-
structions into fetch packets. The compiler does not make the final decision
whether an instruction will become a 16-bit instruction. It does, however, play
the most critical role in specializing instructions so that they are likely to become
16-bit instructions. We call such instruction specialization tailoring.

Because instructions tailored to be 16-bit are restricted to use a subset of
the register file and functional units, they can potentially degrade performance.
Therefore, the compiler implements a set of command line options that allow
users to control the aggressiveness of the tailoring optimizations.

In this section, we describe the various compilation strategies developed to
help exploit the new instruction set features of the C64+ core.

5.1 Instruction Selection

The first strategy involves biasing the compiler to select instructions that have
a high probability of becoming 16-bit instructions. This is done aggressively in
regions of code that have obvious and repetitive patterns. One instance involves
the construction and destruction of local stack frames. Here the compiler prefers
using memory instructions with smaller or zero offsets, increasing their chance
of becoming 16-bit instructions. Another instance is the usage of the CALLP
instruction which handles the common code sequences around function calls.

The compiler will replace a single 32-bit instruction with two instructions that
will likely compress to two 16-bit instructions. Since 16-bit instructions must be
paired in the compressor, replacing a 32-bit instruction with two potential 16-bit
instructions reduces the impact of 32-bit alignment restrictions, which improves
the compression of the surrounding instructions. These transformations are more
aggressively performed when the user is compiling for smaller code size.

During instruction selection, the compiler chooses different sequences of in-
structions based on the user’s goal of either maximum speed or minimum code
size. When compiling for minimum code size, the compiler attempts to generate
instructions that have only 16-bit formats.

The compiler assumes that any potential 16-bit instruction will ultimately
become 16-bit in the compressor. That is, the compiler assumes another 16-bit
instruction will be available to complete the required 16-bit instruction pair.

5.2 Register Allocation

The 16-bit instructions can access only a subset of the register file. The compiler
implements register allocation using graph-coloring [11]. When compiling for
minimum code size, one of the strategies employed by the compiler is to tailor
the register allocation to maximize the usage of the 16-bit instructions’ register
file subset. This improves the likelihood that the compressor will be able to
convert these instructions into their 16-bit forms.

We call this register allocation strategy tiered register allocation. Internally,
the compiler keeps all instructions in their 32-bit format. An oracle is available
that determines whether an instruction can become a 16-bit instruction given
its current state.
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Using tiered register allocation, the compiler limits the available registers for
operands in potential 16-bit instructions to the 16-bit instructions’ register file
subset. If the register allocation attempt succeeds, the operands in potential 16-
bit instructions are allocated registers from the 16-bit instructions’ register file
subset. If the register allocation attempt fails, the compiler incrementally releases
registers for allocation from the rest of the register file for the operands of po-
tential 16-bit instructions. The release of registers is done gradually, initially for
operands with the longest live ranges. Should register allocation attempts con-
tinue failing, the whole register set is made available for all instruction operands
thereby falling back on the compiler’s traditional register allocation mechanism.

There can be a performance penalty when using tiered register allocation.
When the user has directed the compiler to balance performance and code size,
the compiler limits tiered register allocation to the operands of potential 16-bit
instructions outside of critical loops.

When compiling to maximize performance, the compiler disables tiered reg-
ister allocation and instead relies on register preferencing. Preferencing involves
adding a bias to register operands of potential 16-bit instructions. Potential 16-
bit instruction operands are biased to the 16-bit instructions’ register file subset.
During register allocation, when the cost among a set of legal registers is the
same for a particular register operand, the register allocater assigns the register
with the highest preference.

5.3 Instruction Scheduling

When performing instruction scheduling, the compiler is free to place instruc-
tions in the delay slot of a load instruction. After instruction scheduling, if there
are no instructions in the delay slot of a load, the compressor removes the NOP
instruction used to fill the delay slot and marks the load as protected. An im-
provement would be to restrict the scheduler to place instructions in the delay
slot of a load only when it is necessary for performance, and not simply when
it is convenient. This helps maximize the number of protected loads and thus
reduces code size.

When compiling to minimize code size, the compiler prevents instructions
from being placed in the delay slots of call instructions, which allows the compiler
to use the CALLP instruction and eliminates any potential NOP instructions
required to fill delay slots.

5.4 Calling Convention Customization

The calling convention defines how registers are managed across a function call.
The set of registers that must be saved by the caller function are the SOC (save
on call) registers. The set of registers that are saved by the callee function are
the SOE (save on entry) registers. Since SOE registers are saved and restored by
the called function, the compiler attempts to allocate SOE registers to operands
that have live ranges across a call. For backward compatibility, new versions of
the compiler must honor the existing calling convention.
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Because the 16-bit instructions’ register file subset does not include SOE reg-
isters, the compiler implements calling convention customization. This concept
is similar to veneer functions outlined by Davis et. al. [12]. The compiler iden-
tifies call sites with potential 16-bit instruction operands that have live ranges
across a call. The call is then rewritten as an indirect call to a run-time support
routine, which takes the address of the original call site function as an operand.
The run-time support routine saves the 16-bit instructions’ register file subset
on the stack. Control is then transferred to the actual function that was being
called at that call site. The called function returns to the run-time support rou-
tine, which restores the 16-bit instructions’ register file subset and then returns
to the original call site.

This technique effectively simulates changing the calling convention to include
the 16-bit instructions’ register file subset in the SOE registers. This greatly
improves the usage of 16-bit instructions in non-leaf functions. However, there is
a significant performance penalty at call sites where the calling convention has
been customized. Calling convention customization is used only when compiling
to aggressively minimize code size.

6 Results

A set of audio, video, voice, encryption, and control application benchmarks that
are typical to the C6x were chosen to evaluate performance and code size. We ran
the C6x C/C++ v6.0 compiler [13] on the applications at full optimization with
each code size option. The applications were compiled with (C64+) and without
(C64) instruction set extensions enabled. They were run on a cycle accurate
simulator. In order to focus only on the effect of the instruction set extensions,
memory sub-system delays were not modeled.

Figure 7 shows the relative code size on each application when compiling for
maximum performance (no -ms option) between C64 and C64+. At maximum
performance, the compact instructions allow the compiler to reduce code size
by an average 11.5 percent, while maintaining equivalent performance. Figure 8
shows the relative code size on each application when compiling with the -ms2
option which tells the compiler to favor lower code size. When compiled with
the -ms2 option for C64+, the applications are 23.3 percent smaller than with
-ms2 for C64.

In general, software pipelining increases code size. The C64+ processor im-
plements a specialized hardware loop buffer, which, among other things, reduces
the code size of software pipelined loops. The details of the loop buffer are be-
yond the scope of this paper, but a similar loop buffer is described by Merten
and Hwu [14]. (Results shown in figures 7 and 8 do not include the effects of the
loop buffer.)

Figure 9 shows the relative code size and performance differences between
C64 and C64+ at all code size levels, averaged across the applications. The x-
axis represents normalized bytes and the y-axis represents normalized cycles.
All results are normalized to a C64 compiled for maximum performance. As
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Fig. 7. Comparison of code size between C64x and C64+ at maximum performance
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Fig. 8. Comparison of code size between C64x and C64+ at “-ms2”

the figure shows, when compiling for maximum performance, the instruction set
extensions yield an average 11.5 percent code size savings with no reduction in
performance (points on the middle line). The points on the leftmost line indicate
the performance and code size with the addition of the software pipelined loop
buffer (SPLOOP). When compiling for maximum performance, the use of the
instruction set extensions and the software pipelined loop buffer result in an
average 17.4 percent code size reduction with no change in performance.

As shown in fig. 9, the instruction set extensions create a larger code size and
performance tradeoff range. When a developer’s primary desire is to control code
size, this additional range can be useful in balancing performance and code size
in a memory-constrained application common in embedded systems.
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7 Conclusions

We have presented a hybrid approach for compressing VLIW programs using a
combination of compact instruction encoding and compilation techniques. The
C64+ implements a unique method for encoding variable length instructions
using a fetch packet header. A post-code generation tool, the compressor, ul-
timately selects the size of the instructions. This approach relieves the code
generator of unnecessary complexity in our constrained VLIW implementation,
where 32-bit instructions cannot span a 32-bit boundary and 16-bit instructions
must occur in pairs. The compiler tailors a 32-bit instruction with the poten-
tial to become 16-bit depending on the code size priority selected by the user
and the location and nature of the instruction. The compiler uses various tech-
niques, including tiered register allocation and calling convention customization
to tradeoff code size and performance.

For a set of representative benchmarks, we presented results that showed an
11.5 percent to 23.3 percent code size reduction. Finally, the approach presented
here is implemented in the C64+ processor and its production compiler. Future
work includes improvements to the compiler to more effectively tailor code size
optimizations for non-performance critical regions of a function.
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Abstract. The Cell Broadband Engine Architecture is a new heteroge-
neous multi-core architecture targeted at compute-intensive workloads.
The architecture of the Cell BE has several features that are unique in
high-performance general-purpose processors, such as static instruction
scheduling, extensive support for vectorization, scratch pad memories,
explicit programming of DMAs, mailbox communication, multiple pro-
cessor cores, etc. It is necessary to make explicit use of these features to
obtain high performance. Yet, little work reports on how to apply them
and how much each of them contributes to performance.

This paper presents our experiences with programming the Cell BE ar-
chitecture. Our test application is Clustal W, a bio-informatics program
for multiple sequence alignment. We report on how we apply the unique
features of the Cell BE to Clustal W and how important each is to obtain
high performance. By making extensive use of vectorization and by paral-
lelizing the application across all cores, we speedup the pairwise alignment
phase of Clustal W with a factor of 51.2 over PPU (superscalar) execution.
The progressive alignment phase is sped up by a factor of 5.7 over PPU
execution, resulting in an overall speedup by 9.1.

1 Introduction

Computer architectures are changing: while previous generations of processors
gained performance by increasing clock frequency and instruction-level paral-
lelism, future processor generations are likely to sustain performance improve-
ments by increasing the number of cores on a chip. These performance improve-
ments can, however, only be tapped when applications are parallel. This requires
a large additional effort on the side of the programmer. Furthermore, it is likely
that future multi-core architectures will be heterogeneous multi-cores, i.e., the
chip’s cores have significantly different architectures. This further increases the
programming challenge.

The Cell Broadband Engine Architecture [1] is such a new heterogeneous
multi-core architecture targeted at compute-intensive workloads. The Cell BE
has one superscalar processor (Power processing element) and 8 SIMD syner-
gistic processing elements (SPE). The SPEs have a unique architecture, with
features that are uncommon in high-performance general-purpose processors:

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 161–175, 2008.
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static instruction scheduling, scratch pad memories, explicit programming of
DMAs, mailbox communication, a heterogeneous multi-core architecture, etc.
While these features hold promise for high performance, achieving high perfor-
mance is difficult as these features are exposed to the programmer.

In this paper, we implement Clustal W [2], a bio-informatics program, on the
Cell Broadband Engine and report on the optimizations that were necessary to
achieve high performance. Apart from overlapping memory accesses with com-
putation and apart from avoiding branches, we spend a lot of effort to vectorize
code, modify data structures, and to remove unaligned vector memory accesses.
These optimizations increase performance on an SPE. Furthermore, we extract
thread-level parallelism to utilize all 8 SPEs. We report on the impact of each
of these optimizations on program speed.

In the remainder of this paper, we first explain the Cell Broadband Engine
Architecture (Section 2) and the Clustal W application (Section 3). We analyze
Clustal W to find the most time-consuming phases (Section 4). Then, we ex-
plain our optimizations on Clustal W (Section 5) and evaluate the performance
improvements from each (Section 6). Finally, Section 7 discusses related work
and Section 8 concludes the paper.

2 The Cell BE Architecture

The Cell Broadband Engine [1] is a heterogeneous multi-core that is developed by
Sony, Toshiba and IBM. The Cell consists of nine cores: one PowerPC processor
element (PPE) and eight SIMD synergistic processor elements (SPE).1

The PPE serves as a controller for the SPEs and works with a conventional
operating system. It is derived from a 64-bit PowerPC RISC-processor and is
an in-order two-way superscalar core with simultaneous multi-threading. The
instruction set is an extended PowerPC instruction set with SIMD Multimedia
instructions. It uses a cache coherent memory hierarchy with a 32 KB L1 data
and instruction cache and a unified L2 cache of 512 KB.

The eight SPEs [3,4] deliver the compute power of the Cell processor. These
128-bit in-order vector processors distinguish themselves by the use of explicit
memory management. The SPEs each have a local store of 256 KB dedicated for
both data and instructions. The SPE only operates on data in registers which
are read from or written to the local store. Accessing data from the local store
requires a constant latency of 6 cycles as opposed to processors with caches who
have various memory access times due to the underlying memory hierarchy. This
property allows the compiler to statically schedule the instructions for the SPE.
To access data that resides in the main memory or other local stores, the SPE
issues a DMA command. The register file itself has 128 registers each 128-bit
wide allowing SIMD instructions with varying element width (e.g. ranging from

1 The processing units are referred to as the power processing unit (PPU) and syn-
ergistic processing unit (SPU) for the PPE and SPE, respectively. We will use the
terms PPE and PPU, and SPE and SPU, interchangeably.
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2x64-bit up to 16x8-bit). There is no hardware branch predictor in order to
keep the design of the SPE simple. To compensate for this, the programmer or
compiler can add branch hints which notifies the hardware and allows prefetching
the upcoming 32 instructions so that a correctly hinted taken branch incurs no
penalty. Since there is a high branch misprediction penalty of about 18 cycles it
is better to eliminate as much branches as possible. The SIMD select instruction
can avoid branches by turning control flow into data flow.

All nine cores, memory controller and I/O controller are connected through
the Element Interconnect Bus (EIB). The EIB consists of 4 data rings of 16 bytes
wide. The EIB runs at half the frequency of the processor cores and it supports a
peak bandwidth of 204.8 GBytes/s for on chip communication. The bandwidth
between the DMA engine and the EIB bus is 8 bytes per core per cycle in each
direction. Because of the explicit memory management that is required in the
local store one has to carefully schedule DMA operations and strive for total
overlap of memory latency with useful computations.

3 Clustal W

In molecular biology Clustal W [2] is an essential program for the simultaneous
alignment of nucleotide or amino acid sequences. It is also part of Bioperf [5],
an open benchmark suite for evaluating computer architecture on bioinformatics
and life science applications.

The algorithm computes the most likely mutation of one sequence into the
other by iteratively substituting amino acids in the sequences and by introducing
gaps in the sequences. Each modification of the sequences impacts the score of
the sequences, which measures the degree of similarity.

The alignment of two sequences is done by dynamic programming, using the
Smith-Waterman algorithm [6]. This technique, however, does not scale to align-
ing multiple sequences, where finding a global optimum becomes NP-hard [7].
Therefore, a series of pairwise alignments is compared to each other, followed
by a progressive alignment which adds the sequence most closely related to the
already aligned sequences.

The algorithm consists of three stages. In the first stage, all pairs of sequences
are aligned. The second stage forms a phylogenetic tree for the underlying se-
quences. This is achieved by using the Neighbor-Joining algorithm [8] in which
the most closely related sequences, as given by the first stage, are located on the
same branch of the guide tree. The third step progressively aligns the sequences
according to the branching order in the guide tree obtained in the second step,
starting from the leaves of the tree proceeding towards the root.

4 Analysis of Clustal W

Both the space and time complexity of the different stages of the Clustal W
algorithm are influenced by the number of aligned sequences N and the typical
sequence length L. Edgar [9] has computed the space and time complexity of



164 H. Vandierendonck et al.

Table 1. Complexity of Clustal W in time and space, with N the number of sequences
and L the typical sequence length

Stage O(Space) O(Time)
PW: Pairwise calculation N2 + L2 N2L2

GT: Guide tree N2 N4

PA: Progressive alignment NL + L2 N3 + NL2

Total N2 + L2 N4 + L2

each phase in terms of N and L (see Table 1). This theoretical analysis indicates
that the second stage of Clustal W will become more important as the number
of sequences increases, but it is indifferent to the length of these sequences. In
the other stages both the number of sequences and the length are of importance.

The time and space complexity indicate how each phase scales with increasing
problem size, but they does not tell us the absolute amount of time spent in each
phase. In order to understand this, we analyze the program by randomly creating
input sets with preset number of sequences N and sequence length L. Statistical
data of protein databases [10] indicates that the average length of sequences is
366 amino acids, while sequences with more than 2000 amino acids are very rare.
So we randomly created input sets with a sequence length ranging from 10 to
1000 amino acids and with a number of sequences in the same range.

Figure 1 shows the percentage of execution time spent in each stage. Each
bar indicates a certain configuration of the number of sequences (bottom X-
value) and the sequence length (top X-value). The pairwise alignment becomes
the dominant stage when the number of sequences is high, taking responsibility
for more than 50% of execution time when there are at least 50 sequences. In
contrast, when the number of sequences is small, then progressive alignment
takes the larger share of the execution time.

The guide tree only plays an important role when the input set contains a large
number of short sequences. In other cases this stage is only responsible for less
than 5% of the execution time. In a previous study, G-protein coupled receptor
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(GPCR) proteins are used as input sets [11]. These proteins are relatively short,
so the guide tree plays a prominent role. A profile analysis of ClustalW-SMP [12]
shows a more important role for the guide tree, but this is the effect of the SMP
version of Clustal W in which both the pairwise and progressive alignment are
parallelized.

The analysis above shows that the pairwise alignment and progressive align-
ment phases are responsible for the largest part of the execution time. In the
remainder of this paper, we focus on optimizing these two phases and pay no
attention to the guide tree phase (which is parallelized in [12]).

5 Optimization of Clustal W

The inner loops of the pairwise alignment and progressive alignment phases have
very similar structure, so most optimizations apply to both phases. We discuss
first how to optimize these phases for the SPUs. Then we turn our attention to
parallelizing these phases to utilize multiple SPUs.

5.1 Optimizing for the SPU

Loop Structure. The majority of work in the PW and the PA phases is performed
by 3 consecutive loop nests. Together, these loop nests compute a metric of
similarity (score) for two sequences. The first loop nest iterates over the sequences
in a forward fashion, i.e., it uses increasing indices for the sequence arrays. We
call this loop the forward loop. The second loop nest iterates over the sequences
in a backward fashion (using decreasing indices for the sequence arrays), so we
call it the backward loop. From a computational point of view, a single iteration
of the forward and the backward loops perform comparable computations. The
third loop nest computes the desired score using intermediate values from the
forward and backward loops (note that in PA the third loop nest also uses
recursion besides iteration).

In both the PW and PA phases, the third loop performs an order of magnitude
less work than the forward and the backward loops, so we do not bother to
optimize the third loop.

In PW, the forward loop is by far more important than the backward loop, as
the forward loop computes reduced limits on the iteration space of the backward
loop. In PA, the forward and the backward loop have the same size of iteration
space. Hence, they take a comparable share in the total execution time.

The forward and backward loop bodies contain a non-vectorizable part. In the
PW loops, these are scattered accesses to a substitution matrix, while in the PA
loops, these involve calls to a function called prfscore(). This structure limits
the speedup achievable by vectorization of the surrounding loops.

We optimize the forward and backward loops using vectorization (SIMD) and
loop unrolling. These optimizations are known to be very effective on the Cell
BE. Before applying them, we must understand the control flow inside the inner
loop bodies as well as the data dependencies between successive loop iterations.
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Fig. 2. Data dependencies between distinct iterations of the inner loop body of two
nested loops

Vectorization of prfscore(). The prfscore() function called from the PA loops
computes a vector dot product. The vector length is input-dependent but it
cannot exceed 32 elements by definition of the data structures. Furthermore, the
vector length remains constant during the whole PA phase.

We completely unroll the loop assuming 32 iterations of the loop and we
perform a 4-way vectorization. This removes all control flow at the cost of code
size increase. To take the loop iteration limit into account, we use the spu sel()
primitive together with a pre-computed mask array. The spu sel() primitive
selects only those words for which the mask contains ones, so it allows us to sum
over only those values that are required.

Control Flow Optimization. The inner loop body of the backward and for-
ward loops contains a significant amount of control flow, related to finding
the maximum of a variable over all loop iterations. In the PW phase, the
code also remembers the i-loop and j-loop iteration numbers where that max-
imum occurs. It is important to avoid this control flow, since mispredicted
branch instructions have a high penalty on the SPUs. Updating the running
maximum value (if(b > a) a=b;) can be simply avoided by using the SPUs
compare and select assembly instructions to turn control flow into data flow
(a=spu sel(a,b,spu cmpgt(b,a));). In the same vein, it is also possible to re-
member the i-loop and j-loop iteration numbers of the maximum
(imax=spu sel(imax,i,spu cmpgt(b,a));).

Vectorization. The forward and backward loops in the PW and PA phases have
the same data dependencies, which are depicted in Figure 2. There are two
nested loops, with the j-loop nested inside the i-loop. Every box in the figure
depicts one execution of the inner loop body corresponding to one pair of i and
j loop indices. The execution of the inner loop body has data dependencies with
previous executions of the inner loop body, as indicated by edges between the
boxes. Data dependencies carry across iterations of the j-loop, in which case
the dependencies are carried through scalar variables. Also, data dependencies
carry across iterations of the i-loop, in which case the dependences are carried
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through arrays indexed by j. Thus, the execution of the inner loop body has
data dependencies with two prior executions of the loop body.

To vectorize the forward and backward loops, we need to identify V data-
independent loop iterations, where V is the vectorization factor. In these loops,
the vectorization factor is 4, since scalar variables are 32-bit integers and the
vector length is 128bits. Data-independent loop iterations occur for skewed iter-
ation counts for the i-loop and the j-loop. In particular, loop iterations (i0, j0)
and (i1, j1) are independent when i0 + j0 = i1 + j1. Consequently, vectoriza-
tion requires the construction of loop pre-ambles and post-ambles to deal with
non-vectorizable portions of the loop body.

The PW forward loop computes the position of the maximum score. The
original code records the “first” loop iteration where the maximum value occurs
(if(b > a){a=b; imax=i; jmax=j;}). Here, the “first” loop iteration is the
one that occurs first in the lexicographic ordering

(i, j) < (i
′
, j

′
) if (i < i

′
) ∨ ((i = i

′
) ∧ (j < j

′
)).

Since vectorization changes the execution order of the loop iterations, we need
to take care that the same loop iteration is recorded in order to obtain the same
output of the algorithm. In the vectorized code, we simultaneously remember 4
positions where the maximum value occurs, each one corresponding to one of
the 4 vector lanes. When the vectorized loop has finished, we need to select the
maximum value among the per-lane maxima and, if that maximum occurs in
multiple lanes, we need to select the appropriate loop iterations corresponding
to the lexicographic ordering in the original code.

Loop Unrolling to Avoid Unaligned Memory Accesses. Loop unrolling can in-
crease performance by increasing the range across which instructions can be
scheduled and by reducing control flow overhead. Loop unrolling is particularly
important for statically scheduled architectures like the SPU. In the case of
Clustal W, however, loop unrolling did not allow the compiler to create a better
instruction schedule as the loop body already contains sufficient instruction-level
parallelism. Thus, performance remains the same.

In this paper, we show that loop unrolling is also useful to enable other op-
timizations, in this case the removal of unaligned memory accesses. Unaligned
memory accesses should be avoided as the hardware supports only aligned mem-
ory accesses. Consequently, unaligned vector loads and stores translate into a
sequence of several instructions.

The interaction of loop unrolling and alignment is illustrated on the HH [·]
array, which is used in the inner loop body (Figure 3). We assume that the
vector covering elements 1 to 4 of the HH [·] array is aligned. This is the optimal
situation since the j-loop starts at index 1.

In the vectorized loops, each loop iteration loads a 4-element vector from
the HH [·] array. Depending on the iteration count, this vector may or may not
be aligned on a natural boundary. Every iteration, the vector moves one scalar
position in the HH [·] array, so the loaded vector is aligned exactly once every
fourth iteration of the loop and it is unaligned in the other iterations.
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Fig. 3. Elements of the intermediary HH [·] array accessed by successive iterations of
the vectorized loop

Four consecutive iterations of the vectorized loop access 7 distinct scalars
from the HH [·] array (Figure 3). These 7 scalars are located in two consecutive
aligned vectors, so it is possible to load them all at once into vector registers
using two aligned loads, and to store them back using two aligned stores. All
further references to the HH [·] array are now redirected to the vector registers
holding the two words. This optimization removes all unaligned memory accesses
to the arrays that carry dependences between iterations of the i-loop. We apply a
similar optimization to the character arrays holding the sequences in the pairwise
alignment phase.

5.2 Modifications to Data Structures

As the local store is not large enough to hold all data structures, we stream all
large data structures in and out of the SPUs. This is true in particular for the
sequence arrays (PW phase) and for the profiles (PA phase). We also carefully
align all datastructures in the local store to improve vectorization.

In the PA phase, we also modify the second profile, which streams through
the SPU most quickly. Each element of the profile is a 64-element vector of 32-
bit integers. This vector is accessed sparsely: the first 32 elements are accessed
sequentially, the next 2 elements are accessed at other locations in the code and
the remainder is unused. To improve memory behavior, we create two new arrays
to store the 32nd and 33rd elements. Accesses to these arrays are optimized in
the same way as to the HH [·] array of the previous paragraph. When streaming
the second profile, only the first 32 elements are fetched.

5.3 Parallelization of Pairwise Alignment

Pairwise alignment computes a score for every pair of sequences. The scores can
be computed independently for all pairs, which makes parallelization trivial. We
dynamically balance the work across the SPUs by dividing the work in N − 1
work packages where N is the number of sequences. The i-th work package
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corresponds to comparing the i-th sequence to all other sequences j where j > i.
Work packages are sent to SPUs in order of decreasing size to maximize load
balancing.

5.4 Parallelization of Progressive Alignment

Progressive alignment is more difficult to parallelize. Although the forward, back-
ward and third loop nests are executed multiple times, there is little parallelism
between executions of this set of loops. A parallelization scheme similar to the
PW phase is thus not possible. Instead, we note that the first two loop nests are
control- and data-independent. The third loop nests has data-dependencies with
the first two loop nests, but its execution time is several orders of magnitude
smaller. So a first parallelization is to execute the first two loop nests in parallel,
an optimization that is also performed in the SMP version of Clustal W.

A higher degree of parallelization is obtained by observing that most of the
execution time is spent in the prfscore() function. As the control flow through
the loops is entirely independent of the data, we propose to extract DO-ACROSS
parallelism from the loop. Indeed, the prfscore() function can be evaluated
ahead of time as it is independent of the remainder of the computation. As the
prfscore() function takes a significant amount of time, we reserve two threads
to evaluate this function, each handling different values.

Thus, we instantiate three copies of the loop (Figure 4). Two copies compute
each a subset of the prfscore()s and send these values to the third copy through
a queue. The third copy of the loop performs the remaining computations and
reads the results of the prfscore()s from the queue. As control flow is highly
predictable, it is easy to divise a static distribution of work, such that each copy
of the loop can proceed with minimum communication. The only communication
is concerned with reading and writing the queue.

In total, a single call to pdiff() is executed by 6 SPU threads: one for the
forward loop, one for the backward and third loop, two threads to deal with
the prfscore()s for the forward loop and two more threads to deal with the
prfscore()s for the backward loop.
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6 Evaluation

We separately evaluate the effect of each optimization on Clustal W to under-
stand the relative importance of each optimization. Hereto, we created distinct
versions of Clustal W, with each one building upon the previous version and
adding optimizations to it. The baseline version of Clustal W is taken from the
BioPerf benchmark suite [5]. The programs are run with the B input from the
same benchmark suite. We present results only for one input set, as distinct in-
put sets assign different importance to each of the phases, but the performance
of each phase scales similarly across input sets.

We evaluate the performance of each of our versions of Clustal W by running
it on a Dual Cell BE-based blade, with two Cell Broadband Engine processors at
3.2 GHz with SMT enabled. The compiler is gcc 4.0.2 and the operating system
is linux (Fedora Core 5). We added code to measure the overall wall clock time
that elapses during the execution of each phase of Clustal W. Each version of
Clustal W is run 5 times and the highest and lowest execution times are dropped.
We report the average execution time over the 3 remaining measurements.

We first discuss the effect of SPU-specific optimizations on performance. Here,
only a single SPU thread is used. Then, we discuss how performance scales with
multiple SPUs.

6.1 Pairwise Alignment

Figure 5(a) shows the effects of the individual optimizations on the performance
of pairwise alignment. The first bar (labeled “PPU”) shows the execution time
of the original code running on the PPU. The second bar (“SPU-base”) shows
the execution time when the pairwise alignment is performed on a single SPU.
The code running on the SPU is basically the code from the original program,
extended with the necessary control, DMA transfers and mailbox operations.
Although this overhead adds little to nothing to the overall execution time, we
observe an important slowdown of execution. Inspection of the code shows a
high density of control transfers inside the inner loop body of the important
loop nests. Removing this control flow makes a single SPU already faster than
the PPU (“SPU-control”).

The next bar (“SPU-SIMD”) shows the performance when vectorizing the
forward loop. Vectorization yields a 3.6 times speedup. The next step is to unroll
the vectorized loop with the goals of removing unaligned memory accesses. This
shortens the operation count in a loop iteration and improves performance by
another factor 1.7. The overall speedup over PPU-only execution is a factor 6.7.
At this point, the backward loop requires an order of magnitude less computation
time than the forward loop, so we do not optimize it.

6.2 Progressive Alignment

We perform a similar analysis of progressive alignment (Figure 5(b)). Again we
use a single SPU, so the forward and backward loops are executed sequentially on
the same SPU and the prfscore() functions are executed by the same thread.
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Fig. 5. The effect of each of the optimizations on the execution time of pairwise aligne-
ment and progressive alignment

Again, executing the original code on the SPU is slower than running on the
PPU (bar “SPU-base” vs. “PPU”). Again, we attribute this to excessive control
flow. In PA, we identify two possible causes: the loop inside the prfscore()
function and the remaining control flow inside the loop bodies of the forward and
backward loops. First, we remove all control flow in the prfscore() function by
unrolling the loop, vectorizing and by using pre-computed masks to deal with the
loop iteration count (see Section 5.1). This brings performance close to the PPU
execution time (bar “SPU-SIMD-prfscore”). Second, we remove the remaining
control flow in the same way as in the PW loop nests. This gives an overall
speedup of 1.6 over PPU execution (bar “SPU-control”).

Vectorizing the forward and backward loops improves performance, but the
effect is relatively small (bar “SPU-SIMD”). The reason is that the inner loop
contains calls to prfscore. The execution of these calls remains sequential, which
significantly reduces the benefit of vectorization. Since these calls are also re-
sponsible for most of the execution time, there is no benefit from unrolling the
vectorized loops as the unaligned memory accesses are relatively unimportant
compared to prfscore(). Furthermore, removing unaligned memory accesses
requires many registers but the vectorized loop nest is already close to using all
registers.

6.3 Scaling with Multiple SPUs

The final part of our analysis concerns the scaling of performance when using
multiple SPUs. In the following, we use the best version of each phase. Fig-
ure 6(b) shows the speedup over PPU-only execution when using an increasing
number of SPUs.

As expected, the PW phase scales very well with multiple SPUs. With 8 SPUs,
the parallelized and optimized PW phase runs 51.2 times faster than the original
code on the PPU.
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Fig. 6. Speedup of a multi-threaded Clustal W over PPU-only execution

The PA phase has less parallelism than the PW phase. We present results for
three versions (Figure 6(a)): a single-SPU version, a 2-SPU version where the
forward and backward loops execute in parallel, and a 6-SPU version where the
prfscore() function is evaluated by separate threads.

Executing the forward and backward loops in parallel yields a 1.7 speedup
over single-SPU execution. The 6-SPU version improves the 2-SPU version by
1.6. This latter speedup is not very high, as we replace the straight-line code
of prfscore() by control-intensive code to send the values to a different SPU.
Although this communication is buffered, it is necessary to perform additional
checks on buffer limits and to poll the incoming mailbox.

Figure 6(b) also shows the overall speedup for the B input of Clustal W. For
this input, the guide tree phase requires virtually no execution time. The total
execution time is represented by the PW and PA phases. With a single SPU, our
Cell BE implementation is 3 times faster than the original PPU-only version.
With 8 SPUs, our parallel version is 9.1 times faster.

6.4 Discussion

Optimizing the Clustal W program for the Cell BE has given us valuable insight
into this processor. There are a few things that deserve pointing out.

First, although the SPE’s local store can be perceived of as small (256 KB),
there is little point in having larger local stores. Clearly, there isn’t a local store
that will be large enough to hold all of the application’s data, regardless of
input set size. So it will always be necessary to prepare a version of the SPU
code that streams all major data structures in and out of the local store. Given
this assumption, our experience is that 256 KB is enough to hold the compute-
intensive kernels, some small data structures as well as buffers to stream the
major data structures.

Second, the DMA interface is rich and easy to use, although it is necessary
to carefully plan when each DMA is launched. An interesting trick is the use of
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barriers, which force the execution of DMAs in launch order. We use this feature
when copying a buffer from one SPU to another, followed by sending a mailbox
message2 to notify the destination SPU that the buffer has arrived. By using a
barrier, we can launch the message without waiting for completion of the buffer
DMA. Furthermore, tag queues can be specified such that the barrier applies
only to the DMAs in the specified tag queue. Thus, other DMAs (e.g., to stream
data structures) are not affected by the barrier.

We experienced some properties of the Cell BE as limitations. E.g., 32-bit
integer multiplies are not supported in hardware. Instead, the compiler generates
multiple 16-bit multiplies. This is an important limitation in the prfscore()
function, which extensively uses 32-bit multiplies. Also, the DMA scatter/gather
functionality was not useful to us as we needed 8 byte scatter/gather operations
but the cell requires that the data elements are at least 128 byte large.

Finally, although mailbox communication is easy to understand, it is a very
raw device to implement parallel primitives. We find that mailboxes provide not
enough programmer abstraction and are, in the end, hard to use. One problem
results from sending all communication through a single mailbox. This makes
it impossible to separately develop functionality to communicate with a single
SPU, as this functionality can receive unexpected messages from a different SPU
and it must know how to deal with these messages. An interesting solution could
be the use of tag queues in the incoming mailbox, such that one can select only
a particular type or source of message.

7 Related Work

The Cell BE Architecture promises high performance at low power consumption.
Consequently, several researchers have investigated the utility of the Cell BE for
particular application domains.

Williams et al. [13] measure performance and power consumption of the Cell
BE when executing scientific computing kernels. They compare these numbers to
other architectures and find potential speedups in the 10-20x range. However, the
low double-precision floating-point performance of the Cell is a major down-side
for scientific applications. A high-performance FFT is described in [14].

Héman et al. [15] port a relational database to the Cell BE. Only some
database operations (such as projection, selection, etc.) are executed on the
SPUs. The authors point out the importance of avoiding branches and of prop-
erly preparing the layout of data structures to enable vectorization.

Bader et al. [16] develop a list ranking algorithm for the Cell BE. List ranking
is a combinatorial application with highly irregular memory accesses. As memory
accesses are hard to predict in this application, it is proposed to use software-
managed threads on the SPUs. At any one time, only one thread is running.
When it initiates a DMA request, the thread blocks and control switches to
another thread. This results in a kind of software fine-grain multi-threading and
yields speedups up to 8.4 for this application.
2 SPU-to-SPU mailbox communication is implemented using DMA commands.
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Bagojevic et al. [17] port a randomized axelerated maximum likelihood kernel
for phylogenetic tree construction to the Cell BE. They use multiple levels of
parallelism and implement a scheduler that selects at runtime between loop-level
parallelism and task-level parallelism.

Also, the Cell BE has been tested using bio-informatics applications. Sachdeva
et al. [18] port the FASTA and Clustal W applications to the Cell BE. For
Clustal W, they have only adapted the forward loop in the pairwise alignment
phase for the SPU. Their implementation of the PW phase takes 3.76 seconds on
8 SPUs, whereas our implementation takes 1.44 seconds. Our implementation is
faster due to the removal of unaligned memory accesses, due to the vectorization
of address computations when accessing the substitution matrix and also due to
optimizing control flow in the backward pass. Furthermore, Sachdeva et al. apply
static load balancing while our experiments (not discussed) reveal that dynamic
load balancing works better since the comparison of two sequences has variable
execution time.

8 Conclusion

The Cell Broadband Engine Architecture is a recent heterogeneous multi-core
architecture targeted at compute-intensive workloads. The SPUs, which are the
workhorse processors, have rare architectural features that help them to sustain
high performance, but they also require specific code optimizations. In this paper,
we have investigated what optimizations are necessary and we measured how
much they improve performance. We performed our experiments on Clustal W,
a well-known bio-informatics application for multiple sequence alignment where
we found that (i) executing unmodified code on an SPU is slower than execution
on the PPU, (ii) removing control flow from inner loops makes the SPU code
already faster than the PPU, (iii) 4-way vectorization improves performance
up to 3.6x and (iv) removing unaligned memory accesses gives an important
additional speedup in one loop nest. Using these optimizations, we demonstrated
a speedup of 51.2 over PPU-only execution for the pairwise alignment phase, 5.7
for the progressive alignment phase and an overall 9.1 speedup.

We found the lack of support for 32-bit integer multiplies most limiting to
performance and we found mailbox communication to be the most programmer-
unfriendly feature of the SPUs.
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Abstract. Structure alignment prediction between proteins (protein
docking) is crucial for drug design, and a challenging problem for bioin-
formatics, pharmaceutics, and current and future processors due to it
is a very time consuming process. Here, we analyze a well known pro-
tein docking application in the Bioinformatic field, Fourier Transform
Docking (FTDock), on a 3.2GHz Cell Broadband Engine (BE) proces-
sor. FTDock is a geometry complementary approximation of the pro-
tein docking problem, and baseline of several protein docking algorithms
currently used. In particular, we measure the performance impact of re-
ducing, tuning and overlapping memory accesses, and the efficiency of
different parallelization strategies (SIMD, MPI, OpenMP, etc.) on port-
ing that biomedical application to the Cell BE. Results show the poten-
tial of the Cell BE processor for drug design applications, but also that
there are important memory and computer architecture aspects that
should be considered.

1 Introduction

Protein-protein docking algorithms predict the structure alignment between two
or more proteins to form a complex, without the need of experimental mea-
surements at the laboratory. The computational cost of those algorithms is high
due to the large number of aspects to consider. There are three main types of
docking: flexible docking, rigid-body docking, and their combination. In this pa-
per we focus on the rigid-body docking, that consideres that the geometries of
the proteins are not modified when forming the complex. Rigid-body docking is
inadequate when there are several conformational changes during the complex
formation, but it is a very good baseline for flexible protein docking algorithms.

In particular, we focus on the fine- and coarse-grain parallelization of the
Fourier Transform Docking (FTDock) application [14,20] on a Cell processor.
We present experiment results using MPI, OpenMP, function offloading, and
vectorization. Note however that we do not intend to propose the fastest version
of the FTDock on a Cell BE blade. Our main objective is to show the perfor-
mance impact of different implementation and parallelization decisions that one
can take when porting code to a Cell BE blade.

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 176–190, 2008.
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The Cell processor is a joint initiative of Sony, Toshiba and IBM. The first
version of the Cell is the Cell Broadband Engine (CBE) [19]. Cell processor is
composed by a Power-Architecture-compliant Power Processor Element (PPE),
and eight Synergistic Processor Elements (SPE) [13,17], each with a small Local
Store (LS) memory. PPE and SPEs are connected each other and to main mem-
ory through the Element Interconnect Bus (EIB). Different performance analysis
have been done on the Cell BE [7,18,22]. We have followed their results in or-
der to implement serveral versions of the FTDock. The performance analysis of
those versions shows memory bandwidth limitations on the Cell BE and how
different strategies may improve overall performance. To our knowledge, there
is not any other work that analyzes the performance of the FTDock using High
Performance Computers, specially on a Cell BE.

Finally, we compare the coarse and fine-grain parallelization of the Cell-BE
FTDock implementation analyzed to a coarse-grain parallelization of FTDock,
running on a POWER5 multicore. Cell-BE FTDock outperforms by more than
2.4x that coarse-grain parallelization.

2 Related Work

This paper presents the evaluation of a drug design application, FTDock, on
a Cell BE blade. FTDock is baseline of several other rigid-body and flexible
docking algorithms as [6,12]. Authors in [6] develop the pyDockRST software,
based on the FTDock application, by defining distance restraints that help to
score rigid-body docking solutions obtained with FTDock.

Here, we present the porting (following the indications done by CellPerfor-
mance.com [1]) and the analysis of FTDock in order to reflect the computer
architecture bottlenecks of Cell BE pointed out by [7,18,22].

FTDock uses 3D FFTs to reduce computation time. In this paper, as part
of the analysis, we evaluate two generic implementations of a power-of-2 single-
precision complex-data 3D FFTs, based on the 1D FFT library function of the
IBM SDK 1.1 for Cell, by following the ideas of the 3D FFT on Blue Gene [11].
To our knowledge, authors in [9,16] evaluate and propose fast 1D FFT on Cell
BE. Also, the recent version of FFTW 3.2alpha2, with support for Cell BE, im-
plements fast 3D FFTs. Furthermore, there are other works on GPGPU that use
graphic processing to accelerate FFT computation, for instance [23,15], where
GPU cache-conscious 1D FFT are proposed. For a Cell BE, double buffering
processing combined with function offloading will help to exploit memory and
interconnection bus bandwidth. Here, we use different implementations of the
3D FFT as a way to evaluate memory and EIB bandwidth of the Cell BE blade.

One important part of the 3D FFT is the matrix transpositions to be done.
In this paper we implement a SIMD version of the Eklundh’s matrix transpo-
sition [10]. Authors in [8] show how to implement an efficient parallel matrix
transposition on a distributed memory machine. Nevertheless, unlike [8,11], we
are dealing with a small number of processors, Local Store in each SPE is very
small (256 Kbytes) and memory accesses are done by DMA memory transfers.
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Other biomedical applications have been ported and analyzed on Cell BE
machines, for instance, the RAxML Phylogenetic Tree Inference application [4,5].
In those works authors show some hints for porting RAxML to SPE, and propose
a dynamic parallelization technique in order to get maximum benefit from the
processing units of the Cell BE.

3 Experimental Setup

Our experiments have been run on a dual processor Cell BE based blade. It
contains two SMT-enabled Cell BE processors at 3.2 GHz with 1GB DD2.0
XDR RAM (512 MB per processor). The system runs Linux Fedora Core 6,
kernel 2.6.20 (NUMA enabled) with 64 KB Local Store page mapping.

All codes have been developed in C and use the SPE Management Library
1.1 (libspe). Codes running in the SPE components are compiled using spu-gcc
4.1.1 with ”-O3” optimization option. Codes running on the PPE are compiled
using gcc 4.1.1 20061011 (Red Hat 4.1.1-30) and ”-O3 -maltivec” optimization
options. The OpenMP implementation used is the one supported by our version
of gcc, whereas OpenMPI 1.2 is the MPI implementation library we worked
with. Performance has been analyzed using gprof profiler, gettimeofday, and
time-based decrementers.

In order to analyze the FTDock application we use only one of the en-
zyme/inhibitor tests of the benchmark used in [14] since all the tests have similar
sizes. The size of the problem is given by the sizes of the grids used to discretize
the enzyme and the inhibitor. The execution time of the FTDock mostly depends
on thoses grid sizes. We evaluate the application for the only two power-of-two di-
mension grid sizes that make sense under a point of view of structure alignment,
1283 and 2563 grid sizes. For those sizes, the data structures used in FTDock fit
in main memory of the blade we use for the evaluation.

Finally, we stop the FTDock run after a certain number of iterations of its
main loop, enough to characterize the complete application.

4 FTDock Algorithm

Fourier Transform Protein Docking (FTDock) uses the shape recognition algo-
rithm of [20], measuring shape complementarity by Fourier correlation [14]. The
algorithm uses Fast Fourier transforms (FFT) to scan all the possible transla-
tions of the two rotating rigid molecules. In this way, the algorithm reduces the
cost of scanning all translational space from O(N6) to O(N3 log N3).

4.1 Algorithm Description

First, FTDock discretizes molecule A. This molecule is the largest one and will
not be rotated, discretized, or translated any more during the complementary
shape search. Then, FTDock rotates molecule B (the smallest one) and, for each
rotation, discretizes and performs a translational scan of this molecule relative
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to molecule A. For each rotation and translation of molecule B, the surface
complemetarity of the two molecules is evaluated with the correlation of the
two discretized molecules. Molecules are discretized on two N3 grids. For more
details about the algorithm see [14]. In [14], the grid size used is 128× 128× 128
nodes. We evaluate FTDock for 1283 and 2563 grid sizes.

For each rotation, the correlation cost of the translational scan of molecule
B is O(N6). However, it can be solved in O(N3 log N3) using FFTs to compute
the correlation of all the possible translations as follows:

FA = FFT (fA)
FB = FFT (fB)
FC = (F ∗

A)(FB)
fC = iFFT (FC)

where FFT and iFFT denote forward and inverse 3D FFT respectively. fA and
fB functions define the value of a grid node for discretized molecules A and
B respectively. (F ∗

A) denotes complex conjugate and (F ∗
A)(FB) denotes com-

plex multiplication. For each rotation, FTDock scans fC to find the three best
correlation scores using the scoring filter function. The number of partial re-
sults depends on the number of possible orientations (rotations) scanned, that
is 360 × 360 × 180/α, where α is the angular deviation. α is 15 as in [14].

5 Cell BE Implementation of FTDock

We have implemented a Cell-BE FTDock version based on profiling informa-
tion, code analysis and using the existing parallelism levels on a Cell BE Blade.
The profiling information obtained running FTDock on the PPE of a Cell BE
shows that the most time consuming functions are: 3D FFT/iFFTs (54% of to-
tal execution time), complex multiplication ((F ∗

A)(FB)) (12%), the scoring filter
function (21%), and the discretize function (12%). Code analysis indicates that
rotations are data independent. Finally, the different levels of parallelization that
a programmer can exploit on a Cell BE Blade are:

1. Two Cell BEs on a Blade (i.e. using MPI).
2. Dual-threaded PPE (i.e. using OpenMP).
3. 8 SPEs per Cell BE (i.e. using Function-Offloading).
4. SIMD at each SPE, and at the PPE.

So, we have parallelized rotations with MPI. For each rotation, functions 3D
FFT, complex multiplication, 3D iFFT and scoring filter have been offloaded to
the SPEs. Discretize function has been parallelized using OpenMP. Finally, we
have vectorized the scoring filter and the complex multiplication functions.

Below, we detail the 3D FFT/iFFT implementation and its algorithm param-
eters. Also, we briefly explain the offloaded complex multiplication and the new
version of the scoring filter.
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5.1 3D FFT/iFFT

We implement a 3D FFT/iFFT (from this point, only FFT) using sequential
1-stride 1D FFT as a building block [11]. The sizes of the 1D FFTs we use are
relatively small (128 and 256 single-precision complex-data elements), and can
be done within a SPE using the IBM SDK 1-stride fft 1d r2 routine for SPEs.

Figure 1 shows our understanding of a grid of size Nx × Ny × Nz.

(a) Grid dimensions (b) Nx × Ny planes (c) Nx × Nz planes

Fig. 1. Grid Example with Nx = Ny = Nz = 4

The algorithm we have implemented computes the following steps:

– Step 1: For each Nx × Ny plane, Ny 1D FFTs along x dimension.
– Step 2: Matrix transposition of each Nx × Ny plane.
– Step 3: For each Nx × Ny plane, Ny 1D FFTs along current x dimension.
– Step 4: Matrix transposition of each current Nx × Nz plane.
– Step 5: For each current Nx × Ny plane, Ny 1D FFTs along x dimension.
– Step 6: Optional: Matrix Transposition of each current Nx × Nz plane.
– Step 7: Optional: Matrix Transposition of each current Nx × Ny plane.

In Steps 1, 3 and 5, each SPE performs DMA get transfers of a set of rows
of Nx complex-data elements, performs the 1D FFT of those rows, and DMA
put transfers them back to main memory1. Note that 1D FFTs are always done
along 1-stride x dimension thanks to Steps 2 and 4. Otherwise, DMA transfers
of elements that are discontinuous in memory and non-1-stride 1D FFTs would
be much more expensive [18]. Steps 2 and 4 perform matrix transpostions of
all planes along one dimension. We have implemented an in-place B × B SIMD
version of the Eklundh Matrix transposition algorithm [10] as the blocking unit
for plane transpositions. B is the blocksize algorithm parameter. Figure 2 shows
an example of the Eklundh matrix transposition of a 4 × 4 matrix.

The Eklundh matrix transpostion idea can be used to perform a blocking
version of the plane transposition. In this case, each element of Figure 2 can be
considered a B×B submatrix block, where each submatrix should be transposed
as well.

In Cell BE, swapping and matrix transposition of two B × B submatrices
during plane transposition can be done by one or two SPEs. In the case of using
1 We do not detail the double buffering code for simplicity.
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Fig. 2. Eklundh matrix transposition idea for a 4 × 4 matrix

one SPE, no synchronization is needed in order to DMA transfer (swap) the
submatrices to main memory after being transposed in the SPE. Indeed, double
buffering can be implemented overlapping the DMA transfers (put or get) of one
submatrix and the transposition of the other submatrix. In this case, blocksize
B can be up to 64 since one SPE has to keep two B × B submatrices in its LS.
In the case of using two SPEs, those have to be synchronized to DMA transfer
(swap) the submatrices transposed to main memory. The synchronization is done
by using the atomic read intrinsic of the IBM SDK. In this case, blocksize B
can be up to 128 since each SPE has to keep one B × B submatrix in the LS.

In any case, for 128 × 128 planes, one SPE can locally transpose a complete
plane since a plane fits in the LS of the SPE. Moreover, in this case, Steps 1, 2,
and 3, and Steps 4 and 5 of the 3D FFT can be performed together in the same
SPE before transfering the data back to main memory.

Sumarizing, our 3D FFT may follow different execution paths depending on
the plane transposition strategy (one or two SPEs swapping submatrices) and
the B blocksize algorithm parameter:

1. Case B×B submatrix is not the complete plane and/or does not fit in the LS
of a SPE. Plane transposition is done by blocking. We evaluate two different
strategies:
(a) One SPE transposes two B×B submatrices in its LS and DMA transfers

(swaps) them to main memory. B blocksize can be up to 64.
(b) Two SPEs transpose two B×B submatrices, and synchronize each other

to DMA transfer them to main memory. B blocksize can be up to 128.
2. Case 128×128 planes and B blocksize is 128. One SPE can locally transpose

a complete plane. Steps 1, 2 and 3 of the 3D FFT are done together in a
SPE. Steps 4 and 5 are also done together.

Finally, Steps 6 and 7 of the 3D FFT are optional in the context of FTDock
because the complex multiplication ((F ∗

A)(FB)) can be done using the element
orientation obtained on the matrix transposition of Step 4 of the 3D FFT. There-
fore, we do not have to perform Steps 6 and 7 for each 3D FFT in our FTDock
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implementation. Then, in that FTDock context, our iFFT implementation has
to take that element orientation into account in order to perform the matrix
transpositions in the correct order and obtain original element orientation. With
that, we save a total of 2NyNx matrix transpositions per rotation in the FTDock.

5.2 Complex Multiplication Function for FC = (F ∗
A)(FB)

Complex multiplication FC = (F ∗
A)(FB) has been offloaded to SPEs and vec-

torized. Note that complex multiplication sequentially accesses grid elements
continuous in memory, that helps DMA transfers to take profit of memory band-
width. Indeed, in order to reduce the number of DMA transfers to be done, and
maximize the re-use of data in a SPE, we have joined the complex multiplication
with previous and next computation on the FTDock application. That is, the
1D FFTs (Step 5 of the 3D FFT) of a set of rows of the mobile grid, the complex
multiplication of those rows with the corresponding rows on the static grid, and
the 1D iFFTs (Step 1 of the 3D FFT) of the complex multiplication result are
computed together in a SPE. All that process is done using double buffering.

5.3 Scoring Filter Function

For each rotation of the mobile molecule, the scoring filter function scans each
element of the FC grid looking for the three best scorings.

For each grid element, scoring filter function uses Straightinsertion sorting
algorithm [21] to insert the grid element into a three-element sorted vector. We
have implemented a SIMD version of the three-element vector Straightinsertion
algorithm using few SIMD instructions, and removing the three iteration loop.

Also, we have offloaded the SIMD scoring filter to the SPEs. In our implemen-
tation, each SPE looks for the best three local scorings and performs a DMA
put transfer its local scorings to main memory. Finally, PPE sorts all those local
scorings with quicksort. That sorting process does not have a significant cost
since the total number scorings to sort is small.

5.4 Discretize Function

We have parallelized Discretize Function using OpenMP in order to show the
performance impact on the FTDock application when using the dual-thread
feature of the PPU of the Cell BE.

6 Performance Evaluation

In this section, first we analyze the performance of the 3D FFTs (alone) based
on the blocksize B parameter, used for the plane transposition. We present
results for the different strategies followed in the implementation of the 3D FFT
in order to show how the memory and EIB bandwidth may affect the overall
performance. For FTDock analysis, we evaluate the performance contribution
of offloading and vectorizing complex multiplication and scoring filter functions
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to the total execution time of FTDock. That analysis may help a programmer
to decide if the development effort needed to offload and vectorize a code is
worth or not. Finally, we analyze the MPI parallelization of the FTDock using
two tasks, and the parallelization of Discretize function using OpenMP. With
that, one can decide which is the best way of exploiting the different levels of
parallelism of the Cell BE blade.

6.1 Memory Bandwidth Issues and 3D FFT

Figures 3 and 4 show the execution time in seconds of the 3D FFT implemen-
tation presented in Section 5.1 using 1, 2, 4 and 8 SPEs. Each bar is labeled
in the x-axis as blocksize-A or blocksize-B. Blocksize determines the size of the
submatrix basic unit in the plane transposition. A and B stand for using one or
two SPEs, respectively, in order to transpose and swap two submatrices.

a) Comm vs Non Comm b) Steps

Fig. 3. Communication and non-communication elapsed time of the total execution
time for 1283 FFTs (left). Total execution time divided by steps (right). Legends in
reverse order.

a) Comm vs Non Comm b) Steps

Fig. 4. Communication and non-communication elapsed time of the total execution
time for 2563 FFTs (left). Total execution time divided by steps (right).
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Figures 3.a and 4.a show the total execution time divided on communication
and non communication time of the 3D FFT. We have measured the commu-
nication time done in the executions with no computation into the SPEs. Non
communication time in the Figures is the total execution time minus the commu-
nication time. That is, non communication time is the computation that is not
overlapped with communication. Figures 3.b and 4.b show the total execution
time divided on the five mandatory steps of the 3D FFT, but the 128-A and
1283 grid size case (Figure 3.b). For 128-A and 1283 grid size case, the 128×128
plane fits in the LS of the SPE and Steps 1, 2, and 3 are joined together in one
Step called FFT2D in the Figure, and Steps 4, 5 are joined into another Step
called transf+fft in the Figure.

First, independently of using one or two SPEs to swap submatrices on the
transpositions, communication time increases when reducing the blocksize be-
cause this reduction affects the memory bandwidth that we obtain. In particular,
one row DMA transfers, which happens on the second matrix transpostion (for
Nx × Nz planes), misuse the EIB memory bandwidth, specially for 32 block-
size. For rows of 32 elements, there are only 256 bytes to transfer, which is less
than the minimum number of bytes (1024 bytes) to achieve near peak memory
bandwidth [18]. Besides, DMA list transfers can help to improve memory band-
width on second matrix transposition. A DMA list transfer allows gather/scatter
operations, which increases the size of those 256-byte DMA transfers.

Figures 3 and 4 show performance differences between A 3D FFT and B
3D FFT transposition strategies on the communication part. That is because,
in the A 3D FFT strategy, one SPE uses double buffering when swapping and
transposing the two B × B submatrices, while, in the B 3D FFT strategy no
double buffering is done; in this case one SPE performs the matrix transposition
of only one submatrix. Therefore, the execution time of the A 3D-FFT strategy,
for the same blocksize, is less than for B 3D-FFT strategy. However, for 2563 grid
size, B 3D FFT strategy shows better performance when using 128 blocksizes
(Figure 4). That is because we increase the usage of the memory bandwidth of
the EIB and the computation to be done in a SPE. The minimum DMA transfer
size is 1024 bytes, that is a row of 128 elements, two 4-byte floats per element.
That is the minimum size to achieve peak memory bandwidth [18].

Finally, for 128-A and 1283 grid size case, we have reduced the DMA transfers
to do, and increased the re-use of the data per DMA transfer (Figure 3).

Figure 5 shows the speed-up based on the execution time with 1 SPE, using
the best blocksize for each transposition strategy and grid size. The speedup
achieved is not linear. That is mostly due to the contention accessing to main
memory and the conflicts on the EIB. However, one SPE strategy scales very
well for grid size 1283 thanks to the reduction of the DMA transfers. For two
SPE strategy, we estimate the execution time considering that we have the same
speedup for one and two SPE strategies for 2 SPEs.

Finally, synchronization, necessary on accessing to the work scheduler list,
does not seem to be a performance bottleneck. However, we have to interleave
wait loops to read an atomic counter to reduce the contention.



Drug Design Issues on the Cell BE 185

1 2 4 8

SPEs

0

2

4

6

8

sp
ee

d-
up

FFT3D 256 64-A

FFT3D 128 128-A 

a) One SPE strategy

1 2 4 8

SPEs

0

2

4

6

8

sp
ee

d-
up

 

FFT3D 256 128-B

FFT3D 128 128-B 

b) Two SPEs strategy

Fig. 5. Speed-up obtained for each block swapping strategy

6.2 Function Offloading and SIMDization

Figure 6 shows the total execution time of FTDock application (certain number
of iterations) for 1283 and 2563 grid sizes, left and right respectively. Figure 6
shows results for FTDock running on 1 PPU and 1 SPU. For each grid size the
Figure represents nine different versions of the FTDock application:

1. Total execution time without doing the complex multiplication, and running
the scalar version of scoring filter function in the PPU.

2. Total execution time when we only access data (no computation is done) in
the complex multiplication using prefetch directives. Scalar version of scoring
filter function runs in the PPU.

3. Total execution time when running the scalar versions of the complex mul-
tiplication and scoring filter functions in the PPU.

4. Total execution time when running the Altivec version of the complex multi-
plication and the scalar version of the scoring filter functions, both in PPU.

5. Total execution time when running the offloaded complex multiplication in
1 SPU. However, in this version data is only accessed (GET and PUT DMA
transfers) and no computation is done. Scalar scoring filter runs in the PPU.

6. Total execution time when using the offloaded complex multiplication in 1
SPU. Scalar scoring filter function runs in the PPU.

7. Total execution time when running the offloaded SIMD version of the com-
plex multiplication in 1 SPU. Scalar scoring filter function runs in the PPU.

8. Total execution time when running the offloaded SIMD version of the com-
plex multiplication and the scalar scoring filter functions in 1 SPU.

9. Total execution time when running the offloaded SIMD versions of the com-
plex multiplication and the scoring filter functions in 1 SPU.

Table 1 shows versions 4 and 6−9 for 1283 and 2563 grid sizes, for 1, 2, 4 and 8
SPEs. Table also shows the speed-up achieved when offloading and vectorization
are done compared to the SIMD PPU version (Spup in the Table). Offloading
and vectorization performance impact is slightly better for 1283 grid size than
for 2563 grid size since 3D-FFT execution time is less significant.

Several conclusions can be obtained. First, offloading to SPEs and vectoriz-
ing those two functions improve significantly the performance of the drug design



186 H. Servat et al.

1 2 3 4 5 6 7 8 9
0

100

200

300

se
co

nd
s

No CM, SC PPU 
access CM PPU SC PPU
CM PPU SC PPU
access CM SPU SC PPU
CM SPU SC PPU
CM SPU SC SPU

a) 1283 grid size
1 2 3 4 5 6 7 8 9

0

1000

2000

3000

se
co

nd
s

b) 2563 grid size

Fig. 6. Total execution time of FTDock. CM stands for complex multiplication. SC
stands for Scoring Filter. PPU or SPU indicates where the function is running. Number
labels explained in text.

Table 1. Total execution times in seconds for 1283 and 2563 grid sizes using different
levels of optimizations. We also show the speed-up compared to the vectorial PPU
version. Each level is identified by a number that is explained in the text.

SPEs 1283 Spup 2563 Spup
4 6 7 8 9 4/9 4 6 7 8 9 4/9

1 246 223 210 153 127 1.9 2703 2316 2046 1585 1390 1.9
2 216 167 151 82 70 3.1 2132 1564 1466 842 745 2.9
4 207 139 131 47 41 5.0 1746 1207 1135 469 422 4.2
8 196 131 131 30 27 7.3 1632 1025 1020 301 273 6.0

application. In particular, compared to their vectorial versions on the PPU, using
only 1 SPE, the speed-up achieved is nearly 2. Indeed, offloading helps scalability
as we can see in Table 1.

Second, Figure 6 shows that memory hierarchy seem to be a bottleneck when
accessing data from PPU. Bars 1, 2 and 5 can help to understand that. Bar
1 represents the execution time without doing the complex multiplicaction. In
bars 2 and 5, data is only accessed (loads/stores in bar 2, DMA transfers in bar
5) on the complex multiplication function but no computation is done. So, the
execution time difference with bar 1 is the memory access time. Bars show a
significant performance difference. The reason of that is that load/store pending
queue of cache miss accesses (MSHR) seems to limit the PPU version perfor-
mance, making the PPU pipeline stall. DMA transfers do not have that limit.
Therefore, it is worth to offload a function to one SPE if it has to do several
memory accesses and temporal locality is not exploited. Indeed, in our case, we
can see that a SPE scalar version of the function complex multiplication (bar 6)
is faster than a PPE Altivec version (bar 4) due to the data memory access dif-
ference. Moreover, vectorization is important in both PPE and SPE, achieving
around 20% of improvement for the code we have analyzed.

By offloading and vectorizing Scoring filter function we obtain the same kind
of improvements as with complex multiplications.
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6.3 Parallelization Using the Two Cell BE of the Blade

So far, we have presented FTDock execution time results using several SPEs on
the same Cell BE processor of a Cell BE Blade. In this section we present results
for the MPI FTDock parallelization using the two Cell BE of a Blade.

Figure 7 shows the total execution time using 1 or 2 MPI tasks (1 task on
1 PPE), and 1, 2, 4 and 8 SPEs per task, for 1283 (left) and 2563 (right) grid
sizes. Using 1 task with n SPEs is slower (less efficient) than using 2 tasks with
n/2 SPEs. The main reason is that we distribute the contention of the EIB and
the main memory between the two Cell BEs of a Blade. Actually, that can be
seen comparing the execution time of 1 task and 2 tasks for the same number of
SPEs; execution time is not divided by two.
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Fig. 7. Total execution time of the parallel implementation of FTDock using 1 or 2
MPI tasks and 1, 2, 4 and 8 SPEs/task, for 1283 (left), and 2563 (right) grid sizes

6.4 Parallelization Using Dual-Thread PPU Feature

The PPE hardware supports two simultaneous threads of execution [2], dupli-
cating architecture and special purpose registers, except for some system-level
resources such as memory.

Discretize function accesses a working data set that perfectly fits in sec-
ond level of cache. Indeed, the discretize function has a lot of branches that
may not be predicted by the PPE branch-prediction hardware. Hence, a second
thread may make forward progress and increase PPE pipeline use and system
throughput. We achieve 1.5x of the Discretize function when parallelizing it using
OpenMP, and a 1.1 − 1.2x overall improvement of the FTDock application.

In any case, function offloading and vectorization of that function would get
better performance improvements and scalability.

7 Comparison with a POWER5 Multicore Platform

In this section we compare our Cell BE implementation of the FTDock with
a parallel version of the FTDock, running on a POWER5 multicore with two
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1.5GHz POWER5 chips with 16GBytes of RAM. Each POWER5 chip is dual-
core and dual-thread (giving a total of 8 threads on the system). The parallel
version of the FTDock for that multicore uses the FFTW3.2alpha2 library in
order to do the 3D FFT, and consists on dividing the rotations among different
tasks using OpenMPI. Therefore, we are comparing a coarse-grain parallelization
on that multicore against a fine-grain parallelization on a Cell BE.

Figure 8 shows the total execution times of FTDock for 1, 2, 4 and 8 tasks
or SPEs on a POWER5 multicore and on a Cell BE respectively, for 1283 and
2563 grid sizes. We can see that Cell BE FTDock outperforms that multicore
parallel implementation of the FTDock. The reasons seems to be the same that
we commented when comparing PPU and SPU on Section 6.2. Memory hierarchy
becomes a bottleneck for the POWER5 tasks, meanwhile SPEs of the Cell BE
avoid the MSHR limitation accessing to main memory. Moreover, Cell is more
cost-effective and more power-efficient than the POWER5 multicore [24].
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Fig. 8. Total execution time of the parallel implementation of FTDock for a multicore
POWER5 and a CellBE for 1283 grid size(left), and 2563 grid size (right)

8 Conclusions

In this paper we have evaluated and analyzed an implementation of a protein
docking application, FTDock, on a Cell BE Blade using different algorithm pa-
rameters and levels of parallelization.

We have achieved a significant speedup of FTDock when we have offloaded
the most time consuming functions to the SPEs. However, improving the PPU
processor and its memory hierarchy would improve the potential of Cell BE for
applications that can not be completely offloaded to the SPEs. Indeed, increasing
the number of SPEs per task (one thread running on one PPE) improves the
performance of the application. However, linear speedup is not achieved because
main memory and EIB contention increases when several SPEs access to main
memory in the same Cell BE. Therefore, one should parallelize the application
in such a way the main memory and EIB contention is distributed between the
two Cell BE of the blade [18].

The relatively small Local Store of the SPE increases the main memory ac-
cesses in order to keep partial results. With FTDock, we have seen that increasing
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the re-use of data within of the SPE, and so, reducing the amount of DMA trans-
fers to main memory, significantly improves the performance of the application.
In any case, double buffering is necessary to achieve good performance.

Vectorization is important when porting code to the SPEs. Large performance
degradation may happen in the case of using scalar code. However, offloading
functions, vectorized or not, that access large amounts of data without exploit-
ing temporal locality, is crucial for scalability and for avoiding current memory
hierarchy access bottlenecks. We have shown significant performance improve-
ments when accessing data from a SPE, compared to accessing the same data
from the PPE.

Finally, the 3x speedup achieved compared to a Power5 multicore shows the
potential of this heterogeneous multiprocessor, and makes worth enough the
porting effort. However, automatic mechanisms [3], as a first approximation,
would help to accelerate application porting to Cell.
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Abstract. Modern mobile devices need to be extremely energy efficient. Due to
the growing complexity of these devices, energy aware design exploration has
become increasingly important. Current exploration tools often do not support
energy estimation, or require the design to be very detailed before the estimate
is possible. It is important to get early feedback on both performance and energy
consumption during all phases of the design and at higher abstraction levels. This
paper presents a unified optimization and exploration framework, from source
level transformation to processor architecture design. The proposed retargetable
compiler and simulator framework can map applications to a range of proces-
sors and memory configurations, simulate and report detailed performance and
energy estimates. An accurate energy modeling approach is introduced, which
can estimate the energy consumption of processor and memories at a component
level, which can help to guide the design process. Fast energy-aware architecture
exploration is illustrated using an example processor. The flow is demonstrated
using a representative wireless benchmark on two state of the art processors and
on a processor with advanced low power extensions for memories. The frame-
work also supports exploration of various novel low power extensions and their
combinations. We show that a unified framework enables fast feedback on the
effect of source level transformations of the application code on the final cycle
count and energy consumption.

1 Introduction and Motivation

Modern consumers demand portable devices that provide functionality comparable to
that of their non-mobile counterparts, but still having a long battery life. In order to
achieve these ambitious goals, designers need to optimize all parts of these systems. At
the same time an efficient mapping of the application code onto the platform is key to
achieve a high energy efficiency. A mapping can be considered to be efficient if it is
using the available hardware to its full potential.

Currently energy estimation is often only performed at the final stage of the de-
sign, when the hardware is completely fixed and gate level simulations are possible.
This approach restricts extensive energy driven architecture exploration, taking into ac-
count the impact of the compiler and possible transformations on the source code. When

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 193–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



194 P. Raghavan et al.

optimizing applications for a given architecture, designers try to minimize the energy
consumption by improving other metrics like a reduction in the number of memory
accesses. This indirect way is however inconclusive for more complex trade-offs, like
introducing extra operations, and therefore accesses to the instruction memory, in order
to minimize accesses to the data memory. To correctly perform this type of optimiza-
tions, an integrated energy-aware estimation flow is needed.

Decisions at different levels of abstraction have an impact on the efficiency of the
final implementation, from algorithmic level choices to source level transformations and
all the way down to micro-architectural changes. In this paper, we present an integrated
compilation and architecture exploration framework with fast performance and energy
estimation. This work enables designers to evaluate the impact of various optimizations
in terms of energy and performance. The optimizations explored can be either in the
source code, in the compiler or in the architecture.

Current embedded platforms consist of a number of processors, custom hardware and
memories. Because of increasing production costs, flexibility is getting more important
and platforms have to be used for many different and evolving products. In this work
we focus on one of the programmable processors, potentially including special purpose
Functional Units (FUs), that improve the energy efficiency for a certain application
domain. The data and instructions memory hierarchy of this processor are taken into
account.

In this context designers are facing multiple problems. Firstly, given a set of target
applications, the Instruction Set Architecture (ISA, decides on number and type of FUs),
the processor style (correct mix of instruction (ILP) and data level parallelism (DLP)),
the usage of application specific accelerator units, sizes of memories and register files
and the connectivity between these components have to be fixed. In order to reach the
required performance and energy efficiency, the retargetable tool-flow presented here
will enable a fast architecture exploration and lead to better processor designs, taking
into account all parts of the system. Our framework will correctly identify the energy
and performance bottlenecks and prevent designers from improving one part at the cost
of other parts. Since our framework allows the use of novel low power extensions for
different components of the processor, combinations of these extensions can be ex-
plored. Secondly, after the processor has been fixed, architecture dependent software
optimizations using code transformations can dramatically improve the performance
and energy efficiency. An example of such a transformation is loop merging. This tech-
nique can improve data locality, but can have the adverse effect of increasing register
pressure, thereby causing register spilling. Our framework will guide the designer to
choose these transformations. It directly shows the effect of software-optimizations on
the final platform metrics: cycles and Joules. Thirdly, compiler optimizations like im-
proved scheduling and allocation techniques can be evaluated for a range of relevant
state of the art architectures. Their effect on different parts of the system (e.g. register
files, memories and datapath components) can be tracked correctly.

Optimizing this hardware-software co-design problem is complicated by the large
size of the design space. In order to be of practical use, estimation tools should be
sufficiently fast to handle realistic application sizes. Currently, energy estimation during
processor design is done using time consuming gate level simulations. This approach
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is accurate, but requires the hardware design to be completed, which restricts thorough
exploration. Energy estimation at ISA level, enables such a fast estimation, by trading
off some accuracy for speed. The energy estimation of the proposed framework has
been validated against a real design.

The novel contributions of this paper include the following:

1. an accurate ISA level and profiling level energy estimation, early in the design flow
2. a framework that enables simulation and compilation for a wide range of state of

the art processors and advanced low power architectural extensions
3. an integrated framework, which is automated to a large extent, to perform code

transformations, compilation, simulation and energy estimation

The rest of the paper is organized as follows. Section 2 gives an overview of frame-
works that support co-design exploration. Section 3 introduces the proposed framework,
describes the modeled components and the exploration space. Section 4 illustrates the
energy estimation process for different components of the processor and estimation of
the energy consumption of the complete platform. Section 5 describes the results and
analysis for representative optimizations in the embedded context for a WCDMA ap-
plication using the proposed flow. Finally Section 6 gives a summary and outlines the
future work.

2 Related Work

Various attempts to make retargetable compiler and architectural level exploration tools
have been made: e.g. Trimaran [1], Simplescalar [2] and Epic Explorer [3]. All these
frameworks are capable of exploring a restricted design space and do not support impor-
tant architectural features like software controlled memories, data parallelism or SIMD
(Single Instruction Multiple Data), clustered register files, loop buffers etc. These fea-
tures have become extremely important for embedded handheld devices as energy effi-
ciency is a crucial design criterion. Although these frameworks (except Epic Explorer)
do not directly provide energy estimation, several extensions have been built for this
purpose. Wattch [4] and SimplePower, for example, are based on Simplescalar, but
their power models are not geared towards newer technologies and their parameter
range is still too restricted. Other industrial tools like Target’s Chess/Checkers, Ten-
silica’s XPRES and Coware’s Processor Designer provide architectural and compiler
retargetability, but the supported design space is limited to a restricted template and
they do not provide fast, high-level energy estimates. Detailed energy estimates can be
obtained by synthesizing the generated RTL and using the traditional hardware design
flow. Generating such detailed estimates are too time consuming for wide exploration
and for evaluating compiler and architectural optimizations. Energy estimates based on
a library of architectural components, as proposed in this paper, do not suffer from these
drawbacks, as they are fast and sufficiently accurate for these purposes.

In the code transformation space SUIF [5] pioneered enabling loop transformations
and analysis. Wrap-IT [6] from INRIA uses the polyhedral model for analysis and to
perform transformations. These tools alone are not sufficient as transformations can
have an impact (positive, negative or neutral) on various parts of the processors. This is
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because these transformations are not platform independent and therefore essential to
have one integrated flow. In our flow, we directly couple the Wrap-IT loop transforma-
tion framework to the retargetable compiler, simulator and energy estimation engine.

ACE’s CoSy framework and GCC are retargetable compiler frameworks which sup-
port a wide range of high-level compiler optimizations and code generation for a range
of processors. However, these frameworks do not support instruction set simulation and
energy aware exploration. GCC is mainly targeting code generation for general purpose
oriented processors (like x86, Alpha, PowerPC etc.) rather than for low power embed-
ded processors, which is our focus. The roadmap of GCC extensions indicates this is
slowly changing, e.g. providing support for loop transformations and vectorization. In
our future work we will be investigating the possibility of integrating our energy aware
exploration framework and our backend compilation framework with GCC. Although
the CoSy framework targets low power embedded processors, the scope of retargetabil-
ity is limited.

The proposed framework combines the benefits of all the above frameworks, while
giving fast estimates of energy and performance early in the design. It also provides
a framework which can analyze the impact of high level code transformations on the
architecture’s performance and power consumption. This framework can be used to
explore hw/sw co-design, architectural optimizations or software optimizations.

3 Compiler and Simulator Flow

Figure 1 shows the retargetable compiler and simulator framework. For a given appli-
cation and a machine configuration, the flow is automated to a large extent, requiring
minimal designer intervention. Manual steps are only needed for inserting specific in-
trinsics from the intrinsic library or in the case of specifiying a particular loop transfor-
mation. Since the framework is retargetable, it facilitates exploring different machine
configurations for a given application.

The loop transformation engine is part of the Wrap-IT/Uruk framework [6], which is
integrated into the tool chain (shown in Figure 1) and forms the first part of the proposed
flow. Essentially, this engine creates a polyhedral model of the application, which en-
ables automating the loop transformations. The compiler and the simulation framework
are built on top of Trimaran [1], but are heavily extended in order to support a wider
range of target architectures and to perform energy estimation. The integrated and ex-
tended flow forms the COFFEE framework, as described in the following subsections.

The application code is presented to the flow as ANSI-C code. A user-friendly XML
schema is used to describe the target architecture (machine description). It is read in
by processor aware parts of the flow, e.g. the compiler (Coffee-Impact, Coffee-Elcor),
simulator (Coffee-Simulator) and power estimator. The application code can be trans-
formed by the Uruk front-end, before it is passed on to the rest of the compiler and
eventually used for simulation. The simulator generates detailed trace files to track the
activation of the components of the processor. These are finally processed by power and
performance estimation.

The compiler and simulator have been extended to support exploration of the follow-
ing architectural features:
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Fig. 1. COFFEE Compiler and Simulator Framework for transformations, simulation and perfor-
mance/energy estimation

3.1 Memory Architecture Subsystem

The simulator supports both Harvard and Von-Neumann based memory architectures.
The supported features for the data and instruction memory are described below:

Data Memory Hierarchy. The extended simulator supports complete data memory
hierarchy simulations, both for software controlled caches (scratchpad memories or
SPMs) and hardware caches. The presented toolflow assists the designer when select-
ing a cache or a scratchpad, by reporting energy and performance results. In this way
application characteristics can be taken into consideration during this choice.

For scratchpads, the data transfers to and from the higher level memories are handled
by the DMA. When using scratchpads, the DMA has to be programmed to perform
the correct data transfers and the correct timing is accounted for. The compiler will
schedule these DMA operations on the DMA, and correctly handle dependencies. If
the data transfer, e.g. for a large chunk of data to be transfered, can not be finished in
parallel to the computation, the processor will stall. We have added an intrinsic library
to provide an interface to the designer to program the transfers to and from the higher
level data memory, e.g. DMA TRANSFER (source addr, spm dest addr, transfer size).
This is similar to how state of the art scratchpads and DMAs are controlled. The DMA
can also support more complex functionality, like changing the data layout during the
transfer, interleaving or tiling data. This type of advanced DMA can help to reduce
the power consumption further. For caches, hardware cache controllers manage these
memory transfers. The choice for either cache or scratchpad depends on the dynamic or
static nature of the application, and should be made by the designer based on analysis
and simulation. In both cases, the energy and performance is appropriately accounted
for by the simulator.

Another important design decision to be explored is the size and the number of ports
of memories and the usage of multi-level memory hierarchies. These decisions heavily
affect the overall power consumption of the system and hence it is crucial to be able
to explore the entire design space. The COFFEE simulator has been extended from the
original Trimaran 2.0, in order to accurately simulate multi-level cache and scratchpad
based hierarchies. Connectivity, sizes, number of ports etc. are specified in the XML
machine description and can be easily modified for exploration.
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Instruction Memory Hierarchy (IMH). A traditional instruction memory is activated
every cycle to fetch new instructions. Especially in wide architectures, like VLIWs, this
can be one of the most energy consuming parts of the system. Design space exploration
of the IMH can therefore have a large overall effect on the processor energy efficiency.
The IMH can be simulated as a cache, a scratchpad or a multi-level hierarchy. Other
advanced features, like L0 clustering and loop counters (e.g. [7,8]), are also supported.
Loop buffers are commonly used in state of the art processors, like [9,10]. Loop buffers
are small memories which contains the instructions for one nested loop. They reduce
the energy consumption of the IMH by exploiting the locality when executing loops. A
loop controller (LC) iterates over the instructions of the loop in the buffer.

Figure 2 shows different supported configurations of the instruction memory. Figure
2(a) is a conventional L1 configuration where the Program Counter (PC) fetches instruc-
tions from the L1 instruction cache and executes them on the FUs. Figure 2(b) shows
a centralized loop buffer, where the loops are loaded from the L1 instruction memory
to the loop buffer when the loop starts. During the loop execution, the LC (Loop Con-
troller) fetches the instructions from the loop buffer instead of the L1 memory. Figure
2(c) shows a distributed loop buffers that can been customized to the application loop
size for every slot to minimize energy consumption, but are still controlled by a single
LC. The COFFEE framework supports automatic identification and loading of loops into
the loop buffers. Compilation and design space exploration for distributed loop buffers
is described in detail in [8,11]. More complex loop buffer organizations, where every
loop buffer is controlled by a separate LC [12], are also supported, but a description of
this concept is outside the scope of this paper. For all these cases, compilation, simula-
tion and energy estimation are supported.

FU FU FU FU

IL1 Memory
IL1 Memory

PC

PC

LC

FU FU FU FU
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LC

IL1 Memory

FU FU FU FU

L0 Loop Buffer L0 Loop Buffer1 L0 Loop Buffer2

(a) Regular L1 Instr. Memory (b) Centralized Loop Buffer based Memory (c) Distributed Loop Buffer based Memory

Fig. 2. Variants of Instruction Memory Configuration are supported in Coffee

3.2 Processor Core Subsystem

The processor core subsystem consists of the datapath units and register file. These
components are described below:

Processor Datapath. Our flow supports a large datapath design space. Different styles
of embedded processors can be modeled, from small RISC processors with a single slot,
to wide VLIW processors with many heterogeneous execution slots. Multiple slots can
execute instructions in parallel, and can internally consist of multiple functional units
that execute mutually exclusively. The number of slots and the instructions that can be
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executed by each slot (this depends on the functional units in that particular slot) can
be specified in the XML machine description. New functional units can be added to the
architecture, compiler and simulator easily by modifying the machine description and
adding the behavior of the new instruction (in C) to the intrinsic library. The frame-
work provides a user-friendly XML schema to add new functional units and specify
its properties. The operation’s latency, operand specification, pipelining, association of
the functional unit to a certain slot, are specified in the XML machine description and
correctly taken into account during simulation. Different datapath widths can be sup-
ported: 16-bit, 32-bit, 64-bit, 128-bit. By varying the width and number of slots, the
trade off between ILP and DLP can be explored. The width can be specified for each
FU separately, allowing the usage of SIMD and scalar units in one architecture. An ex-
ample of this approach is shown for ARM’s Cortex A8 in Section 5. SIMD units can
be exploited by using intrinsics, similar to those available in Intel’s SSE2, Freescale’s
Altivec. We have also used the proposed tools so simulate other novel architectures like
SyncPro [13].

The pipeline depth of the processor can be specified in the machine description and
the compiler correctly schedules operations onto pipelined functional units. Based on
the activity, the energy consumption of the pipeline registers is automatically estimated.
This is crucial for architectures with deep pipelines (high clock frequency), and for wide
SIMD architectures. In both cases the number of pipeline registers is large and accounts
for a large amount of the energy cost and performance.

Register File. Register Files are known to be one of the most power consuming parts
of the processor. Hence it is important to ensure that the register file design space is
explored properly. The COFFEE flow can handle centralized register files, clustered reg-
ister files, with or without a bypass network between the functional units and the register
files. The size, number of ports and connectivity of the register files are specified in the
machine description file.

Figure 3 shows different register file configurations that are supported by our frame-
work. Combinations of the configurations shown in Figure 3 are supported, both in the
simulator and the register allocation phase of the compiler. Separate register files for
scalar and vector slots can be used together with heterogeneous datapath widths. An
example of such a scalar and vector register file is shown in section 5 using ARM’s
Cortex-A8 core [14]. Communication of data between clusters is supported for various
ways, as shown in Figure 3, ranging from extra copy units to a number of point to point
connections between the clusters. The performance vs. power trade-off (as inter cluster
copy operations take an extra cycle, while increasing the fan-out of register file ports
costs energy in interconnections) can be explored using our framework.

A detailed study of register file configurations and the impact on power and perfor-
mance has been done in [15,16], but these studies are limited to the register file and do
not provide a framework for exploring other parts of the processor.

3.3 Loop Transformations

Having an automated transformation framework integrated to the backend compiler is
crucial for efficient optimization. The URUK framework [6] performs designer directed
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Fig. 3. Variants of Register File architectures that are supported in Coffee

source level transformations to optimize locality in the data memory, improve the num-
ber of Instructions Per Cycle (IPC) and to enable vectorization. Automated transfor-
mations provided by the framework include: loop split, loop fusion, loop interchange,
loop tiling etc. The designer needs to specify the required transformation in a prede-
fined format and the URUK tool performs the transformations automatically, which is
less error prone. In Section 5 we use URUK for transformations which optimize lo-
cality and enable vectorization. Since the designer gets early feedback on the effect on
energy consumption and performance of code transformations for state of the art and
experimental architectures. The designer can judiciously iterate over different (combi-
nations of) transformations, like proposed in [17], to optimize e.g. the energy for the
final platform.

4 Energy Estimation Flow

In order to get fast and fairly accurate energy estimates, to guide code transformations
or architecture exploration, we propose energy estimates coupled to the instruction set
simulator. At this abstraction level, the full hardware description is not yet needed and
therefore exploration can be fast. To enable early estimates with sufficient accuracy, we
propose the following methodology.

The components of the processor (Register File, ALU, pipeline registers, Multipli-
ers, Instruction Decoders etc.) are up-front designed at RTL level (optimized VHDL
description). This is done for various instances of each component, e.g. various register
file configurations, in terms of ports, number of words and width.

Once the VHDL for a component with a particular parameter set is available, the
description is used as input to the flow shown in Figure 4. The target clock frequency of
the system is imposed as a fixed timing constraint on the design. We use the UMC90nm
general purpose standard cell library from Faraday [18] for all experiments shown in
this paper. Each component is passed through logic synthesis (using Synopsys De-
sign Compiler [19]), Vdd/Ground Routing, Place and Route, Clock Tree Synthesis (if
needed), DRC, LVS checks (using Cadence SoC Encounter [20]). The extracted netlists
(with parasitics) is backannotated to the gate level netlist in Prime Power [21]. A test-
bench is generated for (each instance of) all the components, using input data with
realistic toggle behavior. The energy per activation and leakage power for the different
components are estimated from the activity information from gate level simulation and
the parasitic information. This results in a library of parameterized energy models.
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Fig. 4. Flow used for Power Estimation for different components of the processor

Because memories are highly optimized custom hardware blocks, the standard cell
flow cannot be used. Therefore we created a library of energy consumptions (dynamic
and leakage) using a commercial memory compiler (from Artisan). Finally, our pre-
computed library contains the energy consumption (dynamic and leakage) for various
components of the processor using the standard cell flow, and for memories, using a
commercial memory compiler.

The energy estimation can be done at two possible levels: after profiling or after
instruction set simulation.

After compilation, the code is profiled on the host for the given input stimuli. Each
of the individual basic/super/hyperblock is annotated with a weight. The weight of the
block corresponds to the number of times the block was executed for the given input
stimuli at profile time. Based on the weight of each block, the compiled code and the en-
ergy/access of the individual components, the COFFEE tool is capable of estimating the
energy consumption of the processor. This is the flow marked as (1) in Figure 1. A pro-
filing based estimation is extremely fast as no instruction set simulation is performed.
In this case accuracy is traded off for estimation speed with respect to an instruction
set simulation flow (described below), because the profiling based estimation is not ca-
pable of keeping track of the dynamic effects, like e.g. cache behavior. Profiling based
estimation can be used for quick and early exploration.

The instruction set simulation based estimation flow, described in Section 3, counts
the number of activations for each of the components. Based on this activation and the
components’ energy/access from the pre-computed library described above, the energy
consumption of the complete system is computed (marked as (2) in Figure 1). This
approach correctly keeps track of dynamic effects and is slower than the profiling based
approach, but it is still orders of magnitude faster than a detailed gate level simulation
for the complete processor, and therefore fast exploration is possible. Given such a fast
exploration a wide range of architecture exploration can be perfomed quickly.

Leakage energy consumption can also be obtained as the individual leakage energy
for the different components is present1. The total energy consumption and average

1 In our 90nm library, leakage in logic is less than 5% and is ignored in the rest of this paper,
but it can be estimated using the proposed flow.
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power consumption of the complete system can be analyzed and optimized (either by a
change in architecture or a compiler optimization or transformation).

To validate our framework, the energy consumption of an in-house processor
SyncPro[13]2 running WLAN Synchronization was compared to same processor mod-
eled in the proposed COFFEE flow. The processor was designed separately and there
was no sharing of tools/sources between this design and our flow. As a reference, de-
tailed gate-level simulation (after synthesis, placement+routing and extraction) were
performed on WLAN synchronization code. The power was then estimated using Prime-
Power. For more details on the precise flow used for estimating energy consumption
for SyncPro, the reader is refered to [13]. The same code was then run on the COFFEE

framework to estimate the power consumption. The net error in the estimated energy
using the COFFEE estimation and the energy estimate from PrimePower and gate level
simulation is less than 13% for the complete platform (including the memories). More
validation points against other processors are currently being added.

5 Experimental Setup and Results

In this section we demonstrate the COFFEE framework on a representative benchmark
for two state of the art processors (TI’s C64 and ARM’s Cortex-A8). We further il-
lustrate the potential of architectural design space exploration on a standard embedded
VLIW.

5.1 Benchmark Driver: WCDMA

WCDMA is a Wideband Direct-Sequence Code Division Multiple Access (DS-CDMA)
system, i.e. user information bits are spread over a wide bandwidth by multiplying the
user data with quasi-random bits derived from CDMA spreading codes. WCDMA [22]
is one of the dominant 3G cellular protocols for multimedia services, including video
telephony on a wireless link.
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Fig. 5. Wideband CDMA as in Signal Processing On Demand (SODA, [23])

2 [13] is a 5 issue SIMD VLIW and heterogenous distributed register file and a novel intercon-
nection network.
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We have used the proposed compiler and simulator flow to optimize the WCDMA
receiver code from [23] for a baseline VLIW processor. Starting from the detailed per-
formance estimate on the complete code, the receiver filter (Rx Filter in Figure 5) was
identified to be the single most important part of the application in terms of computa-
tional requirements and energy consumption (85% percent of the WCDMA’s Receiver
cycles). Optimizing code transformations using the URUK flow will be illustrated on
this part.

It should be emphasized here that the presented COFFEE framework can be used for
any ANSI-C compliant application. WCDMA is shown as a relevant example from our
target application domain, being multimedia and wireless communication algorithms
for portable devices.

5.2 Processor Architectures

The wide range of architectural parameters supported by the presented framework al-
lows designers to explore many different architectural styles and variants quickly. It
enables experiments with combinations of parameters or components not commonly
found in current processors. In the experimental results shown here, we have optimized
the WCDMA receiver filter for two architectures described in this subsection, as an
example of the range and complexity of architectures that can be supported.

TI C64-like VLIW processor. The TI C64 [10] is a clustered VLIW processor with
two clusters of 4 Functional Units (FUs) each. This processor is chosen as a typical
example of an Instruction Level Parallel (ILP) processor. In this heterogeneous VLIW
each FU can perform a subset of all supported operations. The Instruction Set Archi-
tecture (ISA) and the sizes of memory hierarchy are modeled as described in [10]. The
TIC64 also supports a number of hardware accelerators (e.g. Viterbi decoder). These
blocks can be correctly modeled by our flow by using intrinsics, but since are not needed
for the WCDMA benchmark, they are not modeled in this case study.

ARM Cortex A8-like processor. The Cortex A8 processor [14] is an enhanced
ARMv7 architecture with support for SIMD, and is used here as a typical example
of a Data Level Parallel (DLP) architecture. The processor consists of separate scalar
and vector datapaths. Each datapath has a register file and specialized FUs. The vector
units in the vector datapath support up to 128-bit wide data in various subword modes.
The FUs have a different number of execute stages, which result in different latencies.
The details of the modeled architecture including its memory hierarchy can be found in
[14].

Novel Design Space architectures. To illustrate the wide design space that is sup-
ported by our tools, we start with a standard processor and modify the most power
consuming parts of it. Both architectures are shown in shown in Figure 6. Architecture
A is a 4 issue homogeneous VLIW with a 4kB L1 data cache, 4kB L1 instruction mem-
ory and a centralized register file of 32 deep, 12 ports. Architecture B optimizes some
important parts of the architecture: the cache is replaced with a data scratchpad mem-
ory and a DMA, the L1 instruction memory is enhanced with a distributed loop buffer
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(16 instructions deep). The register file is clustered (16 deep, 6 ports each). Both these
architectures have a standard 5 stage pipeline.

5.3 Loop Transformations

Figure 7 shows the transformations performed on the benchmark code. The first three,
loop split-loop merge-loop merge, improve data locality in memory and IPC. For the
Cortex A8 processor loop tiling is performed as an enabling transformation, vectoriza-
tion is performed manually using intrinsics. The decision on which transformations to
do is up to the designer, and defining an optimal set of transformations for a certain
platform and application domain is outside the scope of this paper.
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Fig. 7. Transformations Used in Uruk for Optimizations

5.4 Results and Analysis

Figure 8 shows the normalized performance in cycles for the TI C64-like processor and
the ARM Cortex A8-like processor, both before and after the transformations. The num-
bers have been normalized to each processor’s initial cycle count. For the ARM, loop-
tiling was performed on the initial and transformed code to enable SIMD. Therefore the
gains are the result of an improvement in locality in the data memory. For the TI, the
performance gains are due to improved data locality and improved ILP. The loop-merge
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transformations in Figure 7 bring more instructions together inside the same loop and
hence the compiler can schedule more instructions in parallel. Resulting performance
gains are higher for the ILP-targeted TI C64x-like processor than for the ARM Cortex
A8-like processor.

Figure 9 shows resulting gains in terms of energy consumption. The graphs have
been normalized to each processor’s initial energy consumption. In both cases the gains
are about 15% on the complete processor (L1 Data memory, L1 Instruction memory,
processor core included). Figure 9 shows the relative contribution of the different parts
of the processor. As both processors (TI C64x and ARM Cortex A8) target high clock

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Initial Final Initial Final Arch A Arch B

N
or

m
. E

ne
rg

y 
Co

ns
um

pt
io

n

Data. Mem. Hier. Inst. Mem. Hier. Reg. File

Pipeline Reg Datapath

TI C64x like Cortex A8 like
Design Space 

Exploration

Fig. 9. Energy results for WCDMA running on the two processors



206 P. Raghavan et al.

frequencies (600 MHz to 1GHz) the number of pipeline stages in the datapath is quite
large and hence the energy consumption of pipeline registers is high. The register file
costs are high because of the high number of ports (two register files of 12-ports each)
for the TI C64x processor, and because of the large width for the ARM Cortex A8
(128-bits).

To illustrate the design space exploration capability of the proposed framework, we
optimize Architecture A, described in the previous subsection. Figure 9 show that the
register file consumes most of the energy. Therefore, the 12-ported register file is re-
placed by a distributed register file. Next, the data memory hierarchy is replaced by a
cache with a scratchpad and a DMA, as all the data accessed have affine index expres-
sions. Finally, as 4 instructions (1 instruction per slot) have to be fetched every cycle,
the instruction memory is also a large energy consumer. It can be improved by adding a
distributed loop buffer on top of the L1 instruction cache. The proposed modifications
are shown in Architecture B. The processor pipeline is not modified, as it depends on the
target frequency. Optimizing different parts of the processor can be done fast using the
integrated framework presented in this paper. Performance and energy gains for Archi-
tecture B are shown in the right-most columns of Figure 8 and 9. Further optimizations
can be performed on Architecture B in following design iterations.

5.5 Use Cases

Table 1 provides an overview of the complete range of which the proposed COFFEE

flow can be used for. The table also shows which parts are completely automated. Indi-
vidual columns show different use cases of the flow. Each entry in the table denotes if
a modification is needed (marked as Y) or not (marked as N). The table shows various

Table 1. Use cases for the tools under different exploration and mapping cases: Y denotes a
modification is needed and N denotes the process is fully automated. (1): Provided the added
instruction fits within the wide set of power models available in the library. (2): In case a software
controlled scratchpad is used, then it is needed to change the application to include explicit DMA
transfers.

Component/Tool Opti. mapping Add new Expl. ILP- Expl. Mem.
on fixed arch Instr. DLP trade-off Hierarchy

Machine Description (xml) N Y Y Y
ISA Description (xml+c) N Y Y N
Application (c) Y N N N(2)
Loop Transf Description Y N N N

Loop Transformer N N N N
Compiler N N N N
Simulator N N N N
Power Model N N(1) N N
Prof. Energy Est N N N N
Sim. Energy Est N N N N



COFFEE: COmpiler Framework for Energy-Aware Exploration 207

different interesting explorations which the designer may want to perform during the
early phase of the design process. It can be clearly seen that for various architecture-
compiler co-exploration, the proposed tools are quite user friendly. Even for a large
exploration task like finding an optimal architecture by balancing ILP-DLP for a given
application, only the machine description and the ISA description needs to be modified
and the rest of the flow is fully automatic.

6 Conclusion and Future Work

In this paper we presented a framework to perform energy-aware architecture explo-
ration. The proposed framework provides all the necessary low power architecture fea-
tures to optimize processors for handheld embedded systems. We illustrated this by
modeling and compiling a representative wireless communication application
(WCDMA) on two state of the art processors (including the instruction memory and
data memory). We validated the accuracy of our energy estimation compared to de-
tailed gate level simulations, using an in-house processor design. We have also shown
that the proposed framework is capable of compiling, simulating, and estimating energy
for a wide range of architectures and advanced low power architectural features. In the
future we plan perform architecture exploration for Software Defined Radio using the
COFFEE framework.
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Abstract. Multiple clock domain (MCD) chip design addresses the problem of
increasing clock skew in different chip units. Importantly, MCD design offers
an opportunity for fine grain power/energy management of the components in
each clock domain with dynamic voltage scaling (DVS). In this paper, we pro-
pose and evaluate a novel integrated DVS approach to synergistically manage the
energy of chip components in different clock domains. We focus on embedded
processors where core and L2 cache domains are the major energy consumers.
We propose a policy that adapts clock speed and voltage in both domains based
on each domain’s workload and the workload experienced by the other domain. In
our approach, the DVS policy detects and accounts for the effect of inter-domain
interactions. Based on the interaction between the two domains, we select an ap-
propriate clock speed and voltage that optimizes the energy of the entire chip. For
the Mibench benchmarks, our policy achieves an average improvement over no-
power-management of 15.5% in energy-delay product and 19% in energy savings.
In comparison to a traditional DVS policy for MCD design that manages domains
independently, our policy achieves an 3.5% average improvement in energy-delay
and 4% less energy, with a negligible 1% decrease in performance. We also show
that an integrated DVS policy for MCD design with two domains is more energy
efficient for simple embedded processors than high-end ones.

1 Introduction

With the increase in number of transistors and reduced feature size, higher chip densi-
ties create a problem for clock synchronization among chip computational units. With
a single master clock for the entire chip, it has become difficult to design a clock dis-
tribution network that limits clock skew among the chip components. Several solutions
have been proposed to this problem using globally-asynchronous locally synchronous
(GALS) design. In GALS design, a chip is divided into multiple clock domains (MCD),
where individual chip units are associated with a particular domain. Each domain op-
erates synchronously with its own clock and communicates with other domains asyn-
chronously through queues.

In addition to addressing clock skew, MCD design offers important benefits to reduc-
ing power consumption with dynamic voltage scaling (DVS) at the domain level. Such
fine-grain power management is important for embedded systems, which often have es-
pecially tight constraints on power/energy requirements. Indeed, National Semiconduc-
tor has recently developed a technology, called PowerWise, that uses multiple domains

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 209–223, 2008.
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to manage the power consumption of ARM-based system-on-a-chip designs [1]. Since
each domain maintains its own clock and voltage independently of other domains, DVS
can be applied at the domain level, rather than at the chip level. Power and energy con-
sumption can be reduced by dynamically adjusting an individual domain’s clock and
voltage according to domain activity. Throughout this paper we use the term speed to
collectively refer to voltage and frequency.

Several power management policies have been proposed to incorporate DVS into
MCD chips. For example, Magklis et al.’s seminal online power management policy
[2] monitors queue occupancy of a domain and computes the change in the average
queue length in consecutive intervals. When queue length increases, the domain speed
is increased; when queue length decreases, the speed is decreased. In general, policies
in the literature [3][4][5][6] focus on each domain in isolation without considering
possible inter-domain effects when varying speed.

In this paper, we propose an integrated power management policy for embedded
processors with multiple clock domains. Unlike other techniques, our policy takes into
account activity and workload in all domains to decide the best set of speed settings. Our
policy stems from our observation that current online DVS policies for MCD chips have
a localized view and control of the DVS in each domain and do not account for domain
interactions. For the Mibench and the SPEC2000 benchmarks, our policy improves the
energy-delay product by 15.5% and 18.5% on average (up to 26%) while energy savings
are 19% and 23.5% on average (up to 32%). The performance penalty is less than
5% and 6.5%, respectively. Compared to a well-known online MCD DVS policy [3],
we show an additional improvement in the energy-delay product of 3.5% and 7%, on
average (up to 13%), with minimal performance degradation. Our policy requires no
additional hardware beyond what is already available in MCD design.

The contribution of this paper is threefold. First, we identify a significant inefficiency
in current online DVS policies, and show the sources and implications of this ineffi-
ciency. Second, we propose a new DVS policy that adapts the core and L2 cache speeds
in a way that avoids these inefficiencies, taking into account domain interactions. Third,
we show positive gains of our policy against a well-known online DVS policy [3].

The remaining portion of this paper is organized as follows. As background, we first
describe application characteristics and MCD hardware design in Section 2. Section 3
compares independent and integrated DVS policies for MCD in terms of design and
implementation. Section 4 presents our integrated DVS policy and identifies scenarios
where it performs better than an independent DVS policy. Evaluation and sensitivity
analysis of our policy against a well-known DVS policy is presented in Section 5. Other
related work is presented in Section 6 and concluding remarks are in Section 7.

2 Application and MCD Chip Models

In this paper, because of the focus on embedded systems, we first consider a simple
MCD processor with two domains (see Figure 1), namely the core and the L2 cache,
and later expand it to include processors with more domains. We consider the core and
the L2 cache domains due to their high influence on the overall performance and energy
consumption. The core domain includes all computational units such as the register
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Fig. 1. MCD processor with two domains

file, functional units, issue unit, decode unit and L1 cache. In the core domain, each
individual unit consumes a small fraction of the total power, but when grouped, that
domain consumes a large fraction of the total chip power. On the other hand, caches
consume a large fraction of the total chip power. For example, caches consume 50%
power for ARM10TDMI running at 400MHz [7] . Moreover, it is predicted that the
L2 cache will continue to be one of the major consumers of energy (due to increasing
on-chip L2 cache sizes) [8].

A typical application goes through phases during its execution. An application has
varying cache/memory access patterns and CPU stall patterns. In general, application
phases correspond to loops, and a new phase is entered when control branches to a dif-
ferent code section. Since we are interested in the performance and energy of the CPU
core and L2 cache, we characterize each code segment in a program using performance
monitors that relate to the activity in each of these domains [3]. Figure 2 shows the vari-
ations in two performance counters (cycle-per-instruction and number of L2 accesses)
as examples of monitors that can be used to represent a program behavior. We obtain
these traces from running the shown benchmarks on Simplescalar with a StrongArm-
like processor configuration (see Section 5). From these graphs, applications go through
varying phases, which cause varying activity in different chip domains.

3 DVS in Multiple Clock Domains

As briefly mentioned above, there are two categories of DVS policies for MCD pro-
cessors that can be implemented in hardware. We discuss them in the context of a two-
domain MCD design shown in Figure 1.

The first is called Independent DVS policy. This policy periodically sets the speed
of each domain independently based on the activity of the domain, which is measured
through performance counters in that domain. For example, we may use the number
of instructions-per-cycle (IPC) and the number of L2 cache accesses as an indication
of the activity in the core and L2 cache domains. IPC encompasses the effects of sev-
eral factors affecting performance that occur within the core such as number and type
(INT/FP) of issued instructions, branch mispredictions, L1 and TLB accesses. Higher
(lower) IPC indicates that more (less) instructions finished execution and the presence
of fewer (more) stall cycles in the different core units. Similarly, in the L2 cache do-
main higher (lower) L2 requests indicate higher (lower) activity in the cache’s different
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Fig. 2. Variations in Cycle-per-Instruction (CPI) and L2 accesses (L2access) of six Mibench and
SPEC2000 benchmarks

sections. The policy periodically monitors the variations in IPC and L2 accesses across
interval periods. The IPC and number of L2 accesses can be monitored through com-
monly available event counters in most modern architectures. Based on the trend in
a counter, the policy decides to change the speed of the corresponding domain. This
scheme is efficient because it can be done locally and with very little overhead.
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The second is the Integrated DVS policy, which takes into account the effect of
speed changes of one domain on the other domain. For example, reducing speed in a
non-critical domain may result in an indirect slow-down in the performance-critical do-
main. This slowdown is not necessarily due to a change in application behavior, but
rather a reaction to the other domain’s slowdown. Detailed discussion of different do-
main interactions is described in Section 4.1. Domain interaction is the driving force
behind our approach.

Our goal is to design an integrated core- L2 cache DVS policy that (1) selects appro-
priate speeds for each domain, adapting to application’s run-time behavior (phases) and
(2) minimizes the overall energy-delay product1.

The general idea of our integrated MCD DVS approach is the use of a power man-
agement controller that collects information about the workload of all domains, and sets
the speed of each appropriately. The power management controller uses the combined
behavior in all domains in a given interval to decide the speed of each domain in the
following interval. Details of our proposed policy are presented in Section 4.2.

4 Domain Interaction-Aware DVS

In this section, we discuss the inefficiency of independent online DVS policies (Sec-
tion 4.1), and propose an interaction-aware DVS policy to overcome this inefficiency
(Section 4.2).

4.1 MCD Inter-domain 3Interactions

Applying DVS independently in an MCD processor creates domain interactions that
may negatively affect the performance and/or energy of other domains. We present an
example to illustrate the cause of these effects and their undesired implications; the
reader is encouraged to follow the numbered steps in Figure 3. (1) Assume an MCD
processor is running an application that experiences some pipeline stalls (e.g., due to
branch misprediction). The increased number of stalls results in reduced IPC. (2) The
independent DVS policy triggers a lower speed setting in the core domain. Slowing
down the core will reduce the rate of issuing instructions, including L2 accesses. (3)
Fewer L2 accesses per interval causes the independent policy to lower the speed in the
L2 cache domain. (4) This, in turn, increases the cache access latency, which (5) causes
more stalls in the core-domain. Hence, this interaction starts a vicious cycle, which
spirals downward.

The duration of this positive feedback2 depends on the application behavior. For bench-
marks with low activity/load variations per domain, this feedback scenario results in low
speeds for both domains. While these low speeds reduce power, they clearly hurt perfor-
mance and do not necessarily reduce total energy-delay product. Analogously, positive
feedback may cause increased speeds in both domains, which potentially improves delay

1 The metric to optimize can vary; we have experimented with the usual metrics, namely energy,
delay, and the most used, the energy-delay product.

2 A positive feedback control is where the response of a system is to change a variable in the
same direction of its original change.
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Fig. 3. Example of positive feedback in independent power management in each domain

at the expense of increasing energy consumption. These two scenarios illustrate that the
independent policy may not properly react to a domain’s true workload.

These undesired positive feedback scenarios arise from the fact that the independent
policy monitors only the local performance of a given domain to set its speed. This local
information does not identify whether the source of the load variability is local to a do-
main or induced by other domains. As a result, the policy cannot take the correct action.
In our example, the variation in IPC can be induced by local effects such as executing
a large number of floating point instructions or suffering many branch mispredictions.
Alternatively, effects from other domains such as higher memory and L2 access latency
can induce variations in IPC. Although the effect on IPC is similar, the DVS policy
should behave differently in these two cases.

Table 1. Percentage of time intervals that experience positive feedback scenarios in some
Mibench and SPEC2000 benchmarks

adpcm dec adpcm enc basicmath crc32 gsm toast gsm untoast lame rsynth
0.28% 1.73% 0.24 % 0.18% 27.7% 20.09% 22.56% 47.56%

bzip equake gcc gzip parser twolf vortex vpr
26.22% 13.98% 23.35 % 21.07% 26.44% 23.69% 12.38% 23.73%

To find out how often applications experience such undesired positive feedback, we
analyzed applications under Semeraro et al.’s independent DVS policy [3]. Table 1 illus-
trates the percentage of time intervals where positive feedback occurs in some Mibench
and SPEC2000 benchmarks. The data is collected over a window of 500M instructions
(after fast-forwarding simulations for 500M instructions). We divide the execution into
100K instruction intervals then count the percentage of consecutive intervals that ex-
perience positive feedback in both the CPU and L2 domains simultaneously. The table
shows that some applications experience high rates of positive feedback, while others
are largely unaffected. In the former (e.g., gsm, lame, rsynth, bzip, parser, and vpr), we
expect that the independent policy will result in relatively high delays or high energy
because it reacts with inappropriate speed setting for more than 20% of the time.
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To have a better indication of the core and L2 cache workloads, the policy has to be
aware of the status of both domains, because each domain may indirectly influence the
workload in the other domain. This motivates the need for run-time policies that take
into account the core and the L2 cache interactions to appropriately set the speeds for
both domains in a way that minimizes total energy, delay or energy-delay product.

4.2 Integrated Core and L2 Cache DVS Policy

In our integrated policy, we monitor the IPC and the number of L2 accesses with perfor-
mance counters. The speeds are driven by the change in the combined status of IPC and
number of L2 accesses in a given execution interval. The rate of increase or decrease
in speed is based on the rate of increase or decrease in the monitored counter subject
to exceeding a threshold as proposed by Zhu et al. [9]. We introduce a new set of rules
(listed in Table 2) to be executed by the DVS policy for controlling the speeds. The
symbols ⇑, ⇓, and − depict an increase, decrease, and no-change in the corresponding
metric. Columns 2 and 3 in the table show the change in the monitored counters while
columns 4 and 5 (columns 6 and 7) show the action taken by independent (our) policy
on the corresponding domain speeds.

Table 2. Rules for adjusting core and L2 cache speeds in independent and proposed policies

Event to Action by Action by our
rule monitor independent policy integrated policy

# IPC L2access Vc V$ Vc V$

1 ⇑ ⇑ ⇑ ⇑ ⇓ ⇑
2 ⇑ ⇓ ⇑ ⇓ ⇑ ⇓
3 ⇑ − ⇑ − ⇑ −
4 ⇓ ⇑ ⇓ ⇑ ⇓ ⇑
5 ⇓ ⇓ ⇓ ⇓ − ⇓
6 ⇓ − ⇓ − ⇓ −
7 − ⇑ − ⇑ − ⇑
8 − ⇓ − ⇓ − ⇓
9 − − − − − −

Given the evidence from Table 1, we decided to focus on the positive feedback cases
described in Section 4.1. These cases only cause a change in rules 1 and 5 in Table 2,
and maintain the other rules exactly the same. It only changes the rules when there is a
simultaneous increase or decrease in IPC and L2 cache accesses. As a result, our policy
requires minimal changes to existing policies (i.e., it can be readily supported without
any additional cost), yet it achieves better energy savings. Contrary to the independent
policy, which seems intuitive, our integrated policy does not increase (or decrease) the
speed if both the counters show an increase/decrease during a given interval. Instead,
the policy changes speeds as shown in the table.

Next, we describe both cases and the reasons behind the counter-intuitive actions of
our policy.
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Simultaneous increase in IPC and L2 cache access (rule 1): Our approach reacts to the
first positive feedback case by reducing the core speed rather than increasing it, as in the
independent policy. This decision is based on the observation that the increase in IPC
was accompanied by an increase in the number of L2 cache accesses. This increase may
indicate a start of a program phase with high memory traffic. Hence, we preemptively
reduce the core speed to avoid overloading the L2 cache domain with excess traffic.
In contrast, increasing the core speed would exacerbate the load in both domains. We
choose to decrease the core speed rather than keeping it unchanged to save core energy,
especially with the likelihood of longer core stalls due to the expected higher L2 cache
traffic.

Simultaneous decrease in IPC and L2 cache access (rule 5): We target the second un-
desired positive feedback scenario where the independent policy decreases both core
and cache speeds. From observing the cache workload, we deduce that the decrease in
IPC is not due to higher L2 traffic. Thus, longer core stalls are a result of local core ac-
tivity such as branch misprediction. Hence, increasing or decreasing the core speed may
not eliminate the source of these stalls. By doing so, we risk unnecessarily increasing in
the application’s execution time or energy consumption. Hence, we choose to maintain
the core speed without any change in this case, to break the positive feedback scenario
without hurting delay or energy.

5 Evaluation

In this section, we evaluate the efficacy of our integrated DVS policy, which considers
domain interactions, on reducing a chip’s energy and energy-delay product. We use the
Simplescalar and Wattch architectural simulators with an MCD extension by Zhu et
al. [9] that models inter-domain synchronization events and speed scaling overheads.
To model the MCD design in Figure 1, we altered the simulator kindly provided by Zhu
et al. by merging different core domains into a single domain and separating the L2
cache into its own domain. In the independent DVS policy, we monitor the instruction
fetch queue to control the core domain, and the number of L2 accesses to control the
L2 cache domain.

Since our goal is to devise a DVS policy for an embedded processor with MCD
extensions, we use Configuration A from Table 3 as a representative of a simple embed-
ded processor (Simplescalar’s StrongArm configuration [10]). We use Mibench bench-
marks with the long input datasets. Since Mibench applications are relatively short,
we fast-forward only 500 million instructions and simulate the following 500 million
instructions or until benchmark completion.

To extend our evaluation and check whether our policy can be extended to differ-
ent arenas (in particular, higher performance processors), we also use the SPEC2000
benchmarks and a high-end embedded processor [9] (see Configuration B in Table 3).
We run the SPEC2000 benchmarks using the reference data set. We use the same exe-
cution window and fastforward amount (500M) for uniformity.

Our goal is twofold. First, to show the benefit of accounting for domain interactions,
we compare our integrated DVS policy with the independent policy described in Sec-
tion 3. For a fair comparison, we use the same policy parameters and thresholds used by
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Table 3. Simulation configurations

Parameter Config. A Config. B
(simple embedded) (high-end embedded)

Dec./Iss. Width 1/1 4/6
dL1 cache 16KB, 32-way 64KB, 2-way
iL1 cache 16KB, 32-way 64KB, 2-way
L2 Cache 256KB 4-way 1MB DM

L1 lat. 1 cycles 2 cycles
L2 lat. 8 cycles 12 cycles

Int ALUs 2+1 mult/div 4+1 mult/div
FP ALUs 1+1 mult/div 2+1 mult/div

INT Issue Queue 4 entries 20 entries
FP Issue Queue 4 entries 15 entries

LS Queue 8 64
Reorder Buffer 40 80

Zhu et al. [9]. The power management controller is triggered every 100K instructions.
Moreover, our policy implementation uses the same hardware used in [9], in addition to
trivial (low overhead) addition in the monitoring and control hardware of an MCD chip.
Second, to quantify the net savings in energy and delay, we compare our policy to a no-
DVS policy, which runs all domains at highest speed. We show all results normalized to
the no-DVS policy.

We first evaluate the policies using an embedded processor (Configuration A in Ta-
ble 3). Figure 4-a shows that for the Mibench applications, the improvement in the
energy-delay product is 15.5% on average (up to 21% in rsynth) over no-DVS policy.
For the SPEC2000 benchmarks, the improvement in the energy-delay product is 18%
on average (up to 26% in twolf) over no-DVS policy. Most of the improvement is a
result of energy savings (an average of 21% across applications) as seen in Figure 4-b,
with much less performance degradation as seen in Figure 4-c (note different Y-axis
scale).

The integrated, interaction-aware policy achieves an extra 7% improvement in
energy-delay product above the independent policy gains. These savings are beyond
what the independent policy can achieve over the no-DVS policy3. The improvement
over the independent policy comes from avoiding the undesired positive feedback sce-
narios by using coordinated DVS control in the core and L2 cache domains. However,
the energy-delay product improvement beyond the gain achieved by the independent
policy is highly dependent on the frequency of occurrence of the positive feedback
scenarios, the duration of the positive feedback and the change in speed during these

3 Reported results of the independent policy are not identical to the one reported in [3] due to
few reasons: (a) The latest distribution of the MCD simulation tool set has a different im-
plementation of the speed change mechanism. (b) We simulate two-domain processor versus
five-domain processor in the original independent policy. (c) We execute applications with
different simulation window, as well.
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(a) Normalized improvement in energy-delay product

(b) Normalized Energy Savings

(c) Performance degradation

Fig. 4. Energy and delay of independent policy (Independent DVS) and our policy (Integrated
DVS) relative to no-DVS policy in configuration A and two voltage domains processor
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Fig. 5. Average degradation in energy-delay product relative to the independent policy

positive feedback cases throughout the application execution. From Table 1, we notice
that the frequency of the positive feedback in adpcm, basicmath, and crc32 is almost
negligible; accordingly, there are significantly smaller benefits from our policy as shown
in Figure 4. On the other hand, applications like gsm, rsynth, gcc, parser, and twolf show
high energy savings due to repeated occurrence of positive feedback cases.

With respect to performance, we note that our proposed integrated policy has a slow-
down of 5% on average for Mibench (7% on average for SPEC2000). This slowdown
is only 1% more than the slowdown of the independent policy.

To test whether a different policy that avoids the undesired positive feedback scenar-
ios using alternative actions (specifically, different actions for rules 1 and 5 in Table 2)
would perform better, we experimented with different rules for these two cases. Table 4
shows the actions of our proposed policy and seven policy variants, in addition to our
proposed integrated policy P0. Figure 5 shows the average degradation in energy-delay
product relative to the independent policy. It is clear that other actions for dealing with
positive feedback scenarios are not as effective in reducing the energy-delay product.
The degradation in energy-delay product of the policy variants ranges from 2% to 12%
over our proposed policy.

Table 4. Variants of our proposed policy: actions of setting the core voltage (Vc) and the cache
speed (V$) in rules 1 & 5 from Table 2

rule P0 P1 P2 P3 P4 P5 P6 P7
# Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$
1 ⇓ ⇑ ⇓ − ⇓ − ⇓ − − ⇑ − − − ⇑ − ⇑
5 − ⇓ − ⇓ − − ⇑ − − ⇓ ⇑ − ⇑ − − −

Sensitivity Analysis

We study the benefit of using a domain interaction-aware DVS policy under different
system configurations. We explore the state space by varying key processor configura-
tions and the granularity of DVS control (that is, number of MCD domains). In addition
to a simple embedded single-issue processor (configuration A in Table 3), we experi-
ment with a more complex embedded processor (configuration B, the same processor
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configuration used in [9]). This test should identify the benefit of interaction-aware pol-
icy in a simple embedded processor versus a more powerful one. This more powerful
processor, such as Intel’s Xeon 5140 and Pentium M, are used in portable medical,
military and aerospace applications [11]. Figure 6-a compares configuration A ver-
sus configuration B in terms of energy-delay product, energy saving, and performance
degradation. The figure shows the average values over the Mibench and SPEC2000
benchmarks for 2 domains. One observation is that we achieve larger energy-delay
improvement in embedded single-issue processor (Config A) than the more complex
one (Config B). This larger improvement is mainly due to higher energy savings. In
single-issue processors, cache misses cause more CPU stalls (due to lower ILP) than in
higher-issue processors. This is a good opportunity for the DVS policy to save energy by
slowing down domains with low workloads while having small impact on performance.

(a) 2 domains (b) 6 domains

Fig. 6. Energy and delay for independent policy (Indpnd) and our integrated policy (Intgrtd)
relative to no-DVS policy for processors with (a) two domains and (b) six domains

Comparing our results with the independent policy, we notice that the average bene-
fit of considering domain interactions decreases with the increase in issue width. This is
because processors with small issue width are more exposed to stalls from the memory
hierarchy, which makes it important to consider the core and L2 cache domain interac-
tion. In contrast, with wider issue width, these effects are masked by the core’s higher
ILP. This result shows that applying the integrated policy can benefit simple embed-
ded processors. Whereas energy-delay savings in high-end embedded processor do not
favor the use of the integrated policy over independent counterpart.

Because we are also interested in the effect of interactions across multiple domains
on energy savings, we examined the effect of increasing the number of clock domains.
To perform this test, we simulated the five domains used in [3], but added a separate
domain for the L2 cache. The resultant domains are: reorder buffer domain, fetch unit,
integer FUs, floating point FUs, load/store queue, and L2 cache domains. We use our
policy to control the fetch unit and L2 domains, and set the speeds of the remaining
domains using the independent policy [3] [9].

Figure 6-b shows the results for the two processor configurations when dividing the
chip into 6-domains. Comparing Figures 6-a and 6-b, we find that DVS in processors
with large number of domains enables finer-grain power management, leading to larger
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energy-delay improvements. However, for embedded systems, a two-domain proces-
sor is a more appropriate design choice when compared to a processor with a larger
number of domains (due to its simplicity). Figure 6 shows that increasing the number
of domains had little (positive or negative) impact on the difference in energy-delay
product between our policy and the independent policy. This indicates that the core-
L2 cache interaction is most critical in terms of its effect on energy and delay, which
yielded higher savings in the two-domain case. We can conclude that a small number
of domains is the most appropriate for embedded processors, not only from a design
perspective but also for improving energy-delay.

6 Related Work

MCD design has the advantages of alleviating some clock synchronization bottlenecks
and reducing the power consumed by the global clock network. Semeraro et al. explored
the benefit of the voltage scaling in MCD versus globally synchronous designs [3]. They
find a potential 20% average improvement in the energy-delay product. Similarly, Iyer
at al. analyzed the power and performance benefit of MCD with DVS [4]. They find
that DVS provides up to 20% power savings over an MCD core with single voltage.

In industrial semiconductor manufacturing, National Semiconductor in collabora-
tion with ARM developed the PowerWise technology that uses Adaptive Voltage Scal-
ing and threshold scaling to automatically control the voltage of multiple domains on
chip [1]. The PowerWise technology can support up to 4 voltage domains [12]. Their
current technology also provides power management interface for dual-core processors.

Another technique by Magklis et al. is a profile-based approach that identifies pro-
gram regions that justify reconfiguration [5]. This approach involves extra overhead of
profiling and analyzing phases for each application. Zhu et al presented architectural
optimizations for improving power and reducing complexity [9]. However, these poli-
cies do not take into account the cascading effect of changing a domain voltage on the
other domains.

Rusu et al. proposed a DVS policy that controls the domain’s frequency using ma-
chine learning approach [13][14]. They characterize applications using performance
counter values such as cycle-per-instruction and number of L2 accesses per instruc-
tion. In a training phase, the policy searches for the best frequency for each application
phase. During runtime, based on the values of the monitors performance counters, the
policy sets the frequency for all domains based on their offline analysis. The paper
shows improvement in energy-delay product close to a near-optimal scheme. However,
the technique requires an extra offline training step to find the best frequencies for each
domain and application characterization.

Wu et al. present a formal solution by modeling each domain as a queuing system [6].
However, they study each domain in isolation and incorporating domain interactions
increases the complexity of the queuing model. Varying the DVS power management
interval is another way to save energy. Wu et al. adaptively vary the controlling interval
to react to changes in workload in each domain was presented in [15]. They do not
take into account the effect induced by voltage change in one domain on the other
domains.
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MCD design is applied for the multicore and simultaneous multithreading proces-
sors such as in [16][17][18]. In [16][17], each core has its own clock network, and the
DVS policy independently controls each core’s voltage. Lopez et al. studies the trade-
off between adapting the L2 cache capacity and speed based on the number of active
threads in the core domain [18].

7 Conclusion

In MCD processors, applying DVS in each domain can significantly reduce energy
consumption. However, varying the voltage and clock independently in each domain
indirectly affects the workload in other domains. This results in an inefficient DVS
policy. In this paper, we identify these inefficiencies in online MCD-DVS policies, and
propose a simple DVS policy that accounts for inter-domain interactions. Our policy
separately assigns the voltage and clock of the core and L2 cache domains based on
activity in both domains. We show that our policy achieves higher energy and energy-
delay savings than an MCD DVS policy that is oblivious to domain interactions. Our
policy achieves average savings in energy-delay product of 18.5% for the SPEC2000
and 15.5% for the Mibench suites. Moreover, our policy achieves higher savings in
energy-delay product over past independent DVS approaches (7% for SPEC2000 and
3.5% for Mibench benchmarks) using the same hardware. We also show that processors
with narrow issue widths have a larger improvement in the energy-delay product with
our integrated DVS policy. Finally, our results show that a simple MCD design using
two domains is more energy efficient for simple embedded processors than for high-end
ones.
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grated CPU and L2 cache Frequency/Voltage Scaling using Supervised Learning. In: Work-
shop on Statistical and Machine learning approaches applied to ARchitectures and compila-
tion (SMART) (2007)

14. AbouGhazaleh, N., Ferreria, A., Rusu, C., Xu, R., Childers, B., Melhem, R., Mossé, D.:
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Abstract. We observe that the same SRAM cell leaks differently, under within-
die process variations, when storing 0 and 1; this difference can be up to 3 
orders of magnitude (averaging 57%) at 60mv variation of threshold voltage 
(Vth). Thus, leakage can be reduced if most often the values with less leakage 
are stored in the cache SRAM cells. We show applicability of this proposal by 
presenting three binary-optimization and software-level techniques for reducing 
instruction cache leakage: we (i) reorder instructions within basic-blocks so as 
to match up the instructions with the less-leaky state of their corresponding 
cache cells, (ii) statically apply register-renaming with the same aim, and (iii) at 
boot time, initialize unused cache-lines to their corresponding less-leaky values. 
Experimental results show up to 54%, averaging 37%, leakage energy reduction 
at 60mv variation in Vth, and show that with technology scaling, this saving can 
reach up to 84% at 100mv Vth variation. Since our techniques are one-off and 
do not affect instruction cache hit ratio, this reduction is provided with only a 
negligible penalty, in rare cases, in the data cache.  

Keywords: Leakage power, power reduction, cache memory, process variation. 

1   Introduction 

Cache memories, as the largest component of today’s processor-based chips (e.g. 70% 
of StrongARM [1]) are among the main sources of power dissipation in such chips. In 
nanometer SRAM cells, most of the power is dissipated as leakage [2] due to lower 
threshold-voltage (Vth) of transistors and higher Vth variation caused by random 
dopant fluctuations (RDF) [3] when approaching atomic sizes. This inherent variation 
impacts stability, power and speed of the SRAM cells. Several techniques exist that 
reduce cache leakage power at various levels [4]-[11], but none of them takes 
advantage of a new opportunity offered by this increasing variation itself: the 
subthreshold leakage current (Ioff) of a SRAM cell depends on the value stored in it 
and this difference in leakage increases with technology scaling. When transistor 
channel length approaches atomic sizes, process variation due to random placement of 
dopant atoms increases the variation in Vth of same-sized transistors even within the 
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same die [13]. This is an unavoidable physical effect which is even more pronounced 
in SRAM cells as area-constrained devices that are typically designed with minimum 
transistor sizes. Higher Vth-variation translates to much higher Ioff-variation 
( )))10ln(//(( svexpI thoff −∝  where s is the subthreshold swing [13]) even in the transistors 

of a single SRAM cell. Since some of these transistors leak when storing a 1 and 
others when storing a 0, cell leakage differs in the two states. Thus cache leakage can 
be reduced if the values stored in it can be better matched with the characteristics of 
their corresponding cache cells; i.e., if most of the time a 0 is stored in a cache cell 
that leaks less when storing a 0, and vice versa. To the best of our knowledge, no 
previous work has observed this saving opportunity. Monte Carlo simulations in 
Section 3 show that theoretically 70% leakage saving (comparing full match to the 
full mismatch) would be available in a technology node with 60mv standard deviation 
of within-die Vth variation. 

In this paper, we (i) reschedule instructions inside each basic-block (BB) of a given 
application to let them better match their corresponding cache cells, (ii) at the same 
time, we use register-renaming to further improve the match between the instructions 
and their cache cells, and (iii) the least-leaky values are stored in the cache-lines that 
won’t be used by the embedded application. In total, these techniques result in up to 
54.18% leakage reduction (36.96% on average) on our set of benchmarks, with only a 
negligible penalty in the data-cache caused by the instruction-reordering since 
techniques (i) and (ii) are applied offline and (iii) is only applied once at the processor 
boot time. Furthermore, it is important to note that this technique reduces leakage in 
the active- as well as standby-mode of system operation (even when the memory cells 
are being accessed) and that it is orthogonal to current circuit/device-level techniques. 

2   Related Works 

Leakage in CMOS circuits can be reduced by power gating [4], source-biasing [2], 
reverse- and forward-body-biasing [5][6] and multiple or dynamic Vth control [7]. For 
cache memories, selective turn-off [8][9] and dual-supply drowsy caches [10] disable 
or put into low-power drowsy mode those parts of the cache that are not likely to be 
accessed again. All these techniques, however, need circuit/device-level modification 
of the SRAM design while our proposal is a software technique and uses the cache as 
is. Moreover, none of the above techniques specifically addresses the leakage 
variation issue (neither variation from cell to cell, nor the difference between storing 0 
and 1) caused by within-die process variation. We do that and we work at system-
level such that our technique is orthogonal to them. Furthermore, all previous works 
focus on leakage power reduction when the SRAM cell is not likely to be in use, but 
our above (i) and (ii) techniques save power even when the cell is actively in use. 

The leakage-variation among various cache-ways in a set-associative cache is used 
in [11] to reduce cache leakage by disabling the most-leaky cache ways. Our 
techniques, in contrast, do not disable any part of the cache and use it at its full 
capacity, and hence, do not incur any performance penalty due to reduced cache size. 
Moreover, our techniques are applicable to direct-map caches as well. 

In logic circuits, value-dependence of leakage power has been identified and used 
in [12] to set the input vector to its leakage-minimizing value when entering standby 
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mode. We show this value-dependence exists, with increasing significance, in nano-
scale SRAM cells and can benefit power saving even out of standby time. 

Register-renaming is a well-known technique that is often used in high-
performance computing to eliminate false dependence among instructions that 
otherwise could not have been executed in parallel. It is usually applied dynamically 
at runtime, but we apply it statically to avoid runtime overhead. To the best of our 
knowledge, register-renaming has not been used in the past for power reduction. 

Cache-initialization, normally done at processor reset, is traditionally limited to 
resetting all valid-bites to indicate emptiness of the entire cache. We extend this 
initialization to store less-leaky values in all those cache-lines that won’t be used by 
the embedded application. This is similar to cache-decay [9] in addressing leakage 
power dissipated by unused cache-lines, but our technique does not require circuit-
level modification of the cache design that has prevented cache-decay from 
widespread adoption. 

3   Motivation and Our Approach 

Leakage is increasing in nanometer-scale technologies, especially in cache memories 
which comprise the largest part of processor-based embedded systems. Fig. 1 shows 
the breakdown of energy consumption of the 8KB instruction-cache of M32R embedded 
processor [13] running MPEG2 application. The figure clearly shows that although 
dynamic energy decreases with every technology node, the static (leakage) energy 
increases such that, unlike in micrometer technologies, total energy of the cache increases 
with the shrinking feature sizes. Thus it is increasingly more important to address leakage 
reduction in cache memories in nanometer technologies. 

We focus on Ioff as the primary contributor to leakage in nanometer caches [13]. Fig. 2 
shows a 6-transistor SRAM cell storing a 1 logic value. Clearly, only M5, M2, and M1 
transistors can leak in this state while the other three may leak only when the cell stores a 
0 (note that bit-lines are precharged to supply voltage, VDD). Process variation, especially 
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Fig. 1. Cache energy consumption in various technology nodes 
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in such minimum-geometry devices, causes each transistor to have a different Vth and 
consequently different Ioff value, finally resulting in different subthreshold leakage 
currents when storing 1 and 0. Since the target Vth is in general reduced in finer 
technologies, in order to keep the circuit performance when scaling dimensions and 
VDD, the Ioff value is exponentially increased, and consequently, the above leakage 
difference is no longer negligible. 

 

Fig. 2. A 6-transistor SRAM cell storing a logic 1. Arrows show leakage paths. 

To quantify this effect, we used Monte Carlo simulation to model several similar 
caches and for each one computed maximum leakage difference once in each cell and 
once more in the entire cache. Notations and formulas are: 

• leak0 (leak1): leakage power of the cell when storing 0 (1). 
• low = min(leak0, leak1)   
• high = max(leak0, leak1) 

highleakleaksavingcellper 10−=−  (1) 

∑∑∑ −=−
cellsallcellsallcellsall

highlowhighsavingcacheperofboundUpper )(  
(2) 

Eq. 1 gives leakage difference between less-leaky and more-leaky states of a single 
cell, while Eq. 2 gives, in the entire cache, the difference between the worst case (all 
cells storing more-leaky values) and the best case (all cells storing less-leaky values). 

Variation in transistors Vth results from die-to-die (inter-die) as well as within-die 
(intra-die) variation. We considered both in these experiments. Inter-die variation, 
which results in varying average Vth among different chips, is generally modeled by 
Gaussian distribution [16] while for intra-die variation, which results in different Vth 

values for different transistors even within the same chip and the same SRAM cell, 
independent Gaussian variables are used to define Vth of each transistor of the SRAM 
cell [17][18]. We used the same techniques to simulate manufacturing of 1000 16KB 
caches (direct-map, 512-set, 32-byte lines, 23 bits per tag) and obtained the maximum 
theoretical per-cell and per-chip savings given in Fig. 3 for σVth-intra (i.e. standard-
deviation of intra-die Vth variations) varying from 10 to 100mv. We assumed each 
cache is within a separate die and used a single σVth-inter=20mv for all dies. The mean 
value of Vth was set to 320mv but our experiments with other values showed that the 
diagrams are independent of the Vth mean value; i.e., although the absolute value of 
the saving does certainly change with different Vth averages (and indeed increases 
with lower Vth in finer technologies), but the maximum saving ratio (Eq. 1 and 2) 
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remains invariant for a given σVth-intra, but the absolute value of the saved power 
increases with decreasing Vth. This makes sense since this saving opportunity is 
enabled by the Vth variation, not the Vth average value. 

Since WLintraVth ×∝− 1σ  [3], where L and W are effective channel length and width 

respectively, the Vth variation is only to increase with technology scaling, and as Fig. 3 
shows, this increases the significance of value-to-cell matching. In 0.13µm process, 
empirical study [19] reports σVth-intra=22.1mv for W/L=4 which by extrapolation gives 
σvth-intra>60mv in 90nm for minimum-geometry transistors; ITRS roadmap also shows 
similar prospects [20]. (We found no public empirical report on 90nm and 65nm 
processes, apparently due to sensitiveness and confidentiality.) Thus we present results at 
various σvth-intra values, but consider 60mv as a typical case. Note that even if the 
extrapolation is not accurate for 90nm process, σvth-intra=60 finally happens at a finer 
technology node due to WLintraVth ×∝− 1σ . Fig. 3 shows that maximum theoretical saving 

using this phenomenon at 60mv variation can be as high as 70%. 
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Fig. 3. Leakage saving opportunity increases with Vth-variation 

3.1   Our Approach  

We propose three techniques applicable to instruction-caches: rescheduling instructions 
within basic-blocks, static register-renaming, and initializing unused cache-lines. We 
first illustrate them by examples before formal formulation. 

Illustrative Example 1: Intra-BB Instructions Rescheduling. Fig. 4 illustrates our 
approach applied to a small basic block (shown at left in Fig. 4) consisting of three 8-bit 
instructions against a 512-set direct-mapped cache with 8-bit line size. The arrow at the 
right of instruction-memory box represents dependence of instruction 2 to instruction 1. 
For simplicity, we assume (i) all the 3 instructions spend the same amount of time in the 
cache, and (ii) the leakage-saving (i.e., |leak0-leak1|) is the same for all bits of the 3 
cache lines. An SRAM cell is called 1-friendly (0-friendly) or equivalently prefers 1 
(prefers 0), if it leaks less power when storing a 1 (a 0). This leakage-preference of the 
cache lines are given in gray in the middle of Fig. 4; for example, the leftmost bit of 
cache line number 490 prefers 0 (is 0-friendly) while its rightmost bit prefers 1 (is 1-
friendly). The Matching table in Fig. 4 shows the number of matched bits for each 
(instruction, cache-line) pair. Due to instruction dependencies, only three schedules are 
valid in this example: 1-2-3 (i.e., the original one), 1-3-2, and 3-1-2 with respectively 
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3+1+3, 3+3+7, and 1+7+7 number of matched bits (see the Matching table in Fig. 4). 
We propose to reschedule basic-blocks, subject to dependencies among the instructions, 
so as to match up the instructions with the leakage-preference of cache lines. Thus, the 
best schedule, shown at right in Fig. 4, is 3-1-2 which improves leakage of this basic-
block by 47% (from 24-7 mismatches to 24-15 ones). 

Obviously, the two simplifying assumptions in the above example do not hold in 
general. Potential leakage-saving differs from cell to cell, and also the amount of time 
spent in the cache differs from instruction to instruction even in the same BB. We 
consider and analyze these factors in our formulation and experiments. 

 

Fig. 4. An example illustrating instruction-rescheduling 

Illustrative Example 2: Register-Renaming. Assume that the two right-most bits of 
each instruction in Fig. 5 represent a source register and the two left-most bits give 
the other source which is also the destination register. Fig. 5 depicts a simple example 
of register-renaming on the cache in the middle of the figure; for presentational 
purposes, we ignore instruction rescheduling here and merely apply register-renaming 
although our algorithm applies both at the same time. When applying merely register-
renaming to these instructions, R0 can be renamed to R3 in the first two instructions 
(note that this implies similar renaming in all predecessor, and successor, instructions 
that in various control-flow scenarios produce, or consume, the value in R0; this is not 
shown in the figure). Similarly, original R3 in the same two instructions can be 
equally-well renamed to either R1 or R0; it is renamed to R1 in Fig. 5. For the third 
instruction, there is no better choice since source and destination registers are the 
same while their corresponding cache cells have opposite preferences (renaming to 
R1, which results in only the same leakage-preference-matching, is inappropriate 
since the instruction would then conflict with the now-renamed first instruction). 

 

Fig. 5. An example illustrating register-renaming 
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Illustrative Example 3: Initializing Unused Cache-Lines. Depending on the 
cache size and the application, some parts of the instruction cache may never be 
used during application execution. Fig. 6 shows the histogram of cache-fill 
operations in the 8KB instruction cache of M32R processor [13] (a 32-bit RISC 
processor) when executing FFT application. 69 out of the 512 16-byte cache-lines 
are never used in this case. We propose to initialize such unused cache-lines with 
values that best match the leakage-preference of their SRAM cells. Many 
processors today are equipped with cache-management instructions (e.g. ARM10 
family [21] and NEC V830R processor [22]) that can load arbitrary values to every 
cache location. Using these instructions, the unused cache-lines can be initialized 
at boot time to effectively reduce their leakage-power during the entire application 
execution. For instance, if in Fig. 5 cache-line number 490 were not to be used at 
all by the application, it would be initialized to 00000111 to fully match its 
leakage-preference. A minimum power-ON duration is required to break even the 
dynamic energy for cache initialization and the leakage energy saved. We consider 
this in our problem formulation and experiments. 
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Fig. 6. Unused cache-lines for FFT application (8KB 2-way cache with 16-byte cache-lines) 

Leakage-Preference Detection. This can be incorporated in the manufacturing test 
procedure that is applied to each chip after fabrication. Usually walking-1 and 
walking-0 test sequences are applied to memory devices [23] to test them for stuck-at 
and bridging faults. Leakage current can be measured at each step of this test 
procedure (similar to delta-IDDQ testing [24]) to determine the leakage-preference of 
cells. This can even be done in-house since commodity ammeters can easily measure 
down to 0.1fA [25] while the nominal leakage of a minimum geometry transistor is 
345pA in 90nm process available to us. For some cells, this difference may be 
negligible, but one can detect more important cells that cause larger leakage 
differences. Test time for an 8KB cache, assuming 1MHz current measurements, 
would be 128ms (measuring leak0 and leak1 for each SRAM cell). 
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4   Problem Formulation 

We formulate the problem using the following notation: 

• Ns, Nw: The number of sets and ways of the cache. 
• NBB: The number of basic-blocks in the given application. 
• Ni(bb): The number of instructions in basic-block no. bb. 
• L(i, bb, w): Leakage power dissipated by the corresponding word of the cache line 

at way w of the cache when instruction number i of basic-block number bb is stored 
there. Note that the cache set corresponding to the instruction is fixed, but the cache 
way may differ over time. 

• T(i, bb, w) or cache-residence time: The amount of time that instruction number i of 
basic-block number bb remains in way w of the corresponding cache set. 

• EBB: Total leakage energy of instruction cache due to basic-block instructions: 

∑ ∑ ∑
= = =

×=
BB i wN

bb

bbN

i

N

w
BB wbbiTwbbiLE

1

)(

1 1

),,(),,(  (3) 

Each term in this summation gives the leakage energy dissipated by instruction i of 
basic-block bb at way w of cache.  

• Tviable: The minimum amount of time that the embedded system should remain ON 
so that the cache-initialization technique would be viable (i.e., would save energy). 

The problem is formally defined as “For a given application and cache organization 
(i.e. for given Ns, Nw, NBB, and Ni(bb) vector), (i) minimize EBB, and (ii) find Tviable.” 

Algorithms. We use a list-scheduling algorithm for problem (i) above to achieve high 
efficiency; register-renaming is performed at each iteration of the algorithm: 

Algorithm 1. ListScheduling(G) 

Inputs: (G: control-data-flow Graph of application) 
Output: (S: obtained Schedule for instructions of the application)  
1  S = empty-list;  
2  foreach basic-block do 
3    BA = Base-Address of the basic-block; 
4    L  = Length of the basic-block; 
5    for addr=BA to BA + L do 
6      lowestLeakage = +INFINITY; bestChoice = 0 
7      for each i in ready-list(G, BA) do 
8        (ni, src, dst, flag) = applyRegRenaming(i, addr); 
9        leak = get_instruction_leakage(ni, addr) 
10       if leak < lowestLeakage then 
11         lowestLeakage = leak;     bestChoice = ni; 
12         bestRegs = (src, dst, flag); 
13       endif 
14     endfor 
15     propagateRegRenamings( G, bestRegs ); 
16     S = S + {bestChoice}; 
17     Mark {bestChoice} as scheduled in G to update ready-list(G, BA); 
18   endfor 
19 endfor 
20 return S 
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The algorithm sequentially processes each basic-block in the application binary 
and stores the new schedule with the new register-names in S as output. It needs the 
control-data-flow graph of the application for register-renaming so as to figure out 
live registers and the instructions that produce and consume them. For each basic-
block, all ready instructions (i.e. those with all their predecessors already scheduled), 
represented by ready-list(G, BA) in line 7, are tried and the one with the least 
leakage is chosen (lines 9-13) and appended to the schedule (lines 16, 17); line 9 
computes the leakage corresponding to the instruction by giving the innermost 
summation of Eq. 3. Register-renaming is also applied to each ready-instruction (line 
8) and if chosen as the best, its corresponding new register-names are propagated to 
all predecessor and successor instructions (line 15); these procedures are given below: 

Procedure: applyRegRenaming(i, addr) 

Inputs: (i: the instruction binary to manipulate), 
        (addr: the address of i in memory) 
Outputs:(new_i: instruction after register-renaming), 
        (src, dst: new source and destination regs), 
        (flag: shows which regs were finally renamed) 
1  src = first-source-register of i; 
3  dst = destination-register of i; 
3  flag = 0; 
4  if src not affixed 
5     src = get_best_src1_choice(i, addr); flag+=1; 
6  if dst not affixed 
7     dst = get_best_dest_choice(i, addr); flag+=2; 
8  new_i = i with src, and dst; 
9  return new_i, src, dst, flag; 

This procedure checks the two source and destination registers (in M32R, the 
destination register and the second source register are the same) and if each of them is 
not affixed, tries to rename it to the best available choice. A source or destination 
register is affixed if due to an already-applied register-renaming it is previously 
determined and should be kept unchanged; the below procedure pseudo-code shows 
this. In some cases, it may be beneficial to reconsider renaming since the leakage 
reduction by the new register-renaming may outweigh the loss in previously renamed 
instructions; we did not consider this for simplicity and efficiency. 

Procedure: propagateRegRenamings(G, i, src, dst, flag) 

Inputs: (G: control data flow Graph of application), 
        (i: instruction before register-renaming), 
        (src, dst: new source and destination regs) 
        (flag: shows which regs are renamed) 
1 org_src = first-source-register of i; 
2 org_dst = destination-register of i; 
3 if (flag & 1)  
4   rename org_src to src, and mark it affixed, in all predecessors and 
    successors of i in G 
5 if (flag & 2)  
6   rename org_dst to dst, and mark it affixed, in all predecessors and  
    successors of i in G 
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The algorithm has a time complexity of O(m.n2) and memory usage of O(m.n) 
where m and n respectively represents the number of basic-blocks in the application 
and the number of instructions in the basic-block. Note that the algorithm correctly 
handles set-associative caches since the innermost summation in Eq. 3 considers 
individual leakages of each cache-way. The algorithm does not necessarily give the 
absolute best schedule neither the best register-names, but comparing its experimental 
results to that of exhaustive search in the feasible cases, which is still prohibitively 
time-consuming, shows the results are no more than 12% less optimal than the 
absolute best schedule. 

5   Experimental Results 

We used benchmarks from MiBench, MediaBench, and also Linux compress (Table 
1) in our experiments. Monte Carlo simulation was used to model within-die process 
variation; independent Gaussian random values for Vth of each transistor of the cache 
were generated with 320mv as the mean and 60mv as the standard deviation. 
 

Table 1. Benchmarks specifications 

Basic-block size (#instr.) 
Benchmark 

No of  
basic-blocks Average   Largest 

MPEG2 encoder ver. 1.2 16000 5.36 596 
FFT 12858 4.83 75 
JPEG encoder ver. 6b 11720 5.68 248 
Compress ver. 4.1 9586 5.11 718 
FIR 450 7.59 57 
DCT 508 4.96 64 
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Fig. 7. Average leakage power on 1000 8KB direct-map caches 



234 M. Goudarzi, T. Ishihara, and H. Noori 

To consider the randomness of process variations, we simulated 1000 chips and ran 
our algorithm on all of them. Die-to-die variations do not change the saving 
percentage (see Section 3) and were not modeled in these experiments. Benchmarks 
were compiled with no compiler optimization option and were simulated using M32R 
instruction-set simulator to obtain cache-residence and cache-line usage statistics for 
1 million instructions (FIR ran up to completion).  

Fig. 7 shows the average leakage powers (corresponding to an industrial 90nm 
process) before and after applying our leakage-saving techniques, obtained over 
1000 8KB direct-mapped caches with 16-byte cache-line size. Each bar is 
composed of two parts: the leakage power dissipated by the cache-lines that were 
used during application execution, and those that were never used. Our rescheduling 
algorithm reduces the former, while the cache-initialization technique suppresses 
the latter. 

Table 2 gives the individual average and maximum savings obtained by each 
technique over the above 1000 chips; note that the values in rescheduling and 
initializing columns respectively correspond to the leakage savings only in used and 
only in unused cache-lines. The rescheduling and register-renaming technique saves 
up to 31.31% of power for FIR while savings by the cache-initialization technique 
reaches 58.36% for JPEG benchmark. Average saving obtained by cache-initialization 
is 54.51% for all benchmarks since we assumed that before initialization, SRAM cells 
in the unused cache-lines randomly contain 0 or 1 values. 

Table 2. Average and maximum leakage savings by our techniques 

Average saving (%) Maximum saving (%) 
Benchmark rescheduling initializing Together rescheduling initializing Together 
MPEG2 20.10 54.51 26.78 21.67 56.16 28.25 
FFT 20.50 54.51 36.28 22.43 55.7 37.36 
JPEG 16.70 54.51 17.96 17.91 58.36 19.26 
Compress 19.74 54.51 48.15 23.95 55.32 48.92 
FIR 20.04 54.51 53.52 31.31 55.19 54.18 
DCT 19.31 54.51 39.09 21.49 55.61 40.13 

Different cache-sizes result in different number of unused cache-lines, and hence, 
affect saving results. Fig. 8 depicts the savings for 16KB, 8KB, and 4KB direct-map 
caches with 16-byte line-size. As the figure shows, in general, the leakage saving 
reduces in smaller caches proportional to the reduction in the number of unused 
cache-lines. This, however, does not affect the results of the rescheduling and 
register-renaming techniques, and hence, increases their share in total leakage-
reduction (see Fig. 8). Consequently, when finally all cache-lines are used by the 
application in a small cache, the leakage reduction reaches its minimum (as in 
MPEG2 and JPEG cases in Fig. 8), which is equal to the saving achieved by the 
rescheduling and register-renaming technique alone (compare MPEG2 and JPEG in 
Fig. 8 to their corresponding rows in Table 2 under rescheduling column). 
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Fig. 8. Effect of cache-size on average leakage-saving results 

Set-associative caches take better advantage of the available cache-lines and reduce 
the number of unused ones. Fig. 9 shows the leakage savings in an 8KB cache when 
the number of ways changes from 1 (direct-map) to 8. The leakage-saving by cache-
initialization reduces in caches with higher associativity, and finally total saving 
reduces to that obtained by the rescheduling and register-renaming technique as is 
again the case for MPEG2 and JPEG in Fig. 9. 

Furthermore, in set-associative caches, the location of each instruction in the cache 
cannot be precisely determined since there are multiple cache-lines in the cache-set that 
corresponds to the address of the instruction. This uncertainty is expected to decrease 
the saving results of the rescheduling algorithm, however, our cache simulator gives 
separate per-way residence-times for each instruction so as to direct the matching 
process toward the cache-ways with higher probability of hosting the instruction. 
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Fig. 9. Effect of set-associative caches on total leakage saving 
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Saving results of Algorithm 1 are given in Fig. 10; as in Fig. 9, cache size and line-size 
are respectively fixed at 8KB and 16-bytes while the number of cache-ways varies from 
1 to 8. The figure confirms that the number of cache-ways only slightly affects the results 
due to the above-mentioned technique for directing the algorithm towards matching the 
instruction against the more likely used cache-way. Some marginal increases are seen in 
Fig. 10 for MPEG2, Compress, and FIR at higher cache associativity; these are random 
effects that happen since the algorithm does not give the absolute optimal schedule and 
also the cache-lines that correspond to each instruction changes when changing the 
number of cache-ways. 
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Fig. 10. Effect of set-associative caches on rescheduling algorithm 

Execution-times of the rescheduling algorithm for the above caches are given in Table 
3; values are measured on a Xeon 3.8GHz processor with 3.5GB memory. The execution 
time increases with the number of cache-ways, since more calculations are necessary, but 
it remains reasonably low to be practical. 

Fig. 3 suggests that the achievable energy saving rises with the increase in Vth 
variation caused by technology scaling. We repeated the experiments for 8KB, 512-set 
direct-map cache with σVth-intra varying from 20 to 100mv (with mean-Vth=320mv 
 

Table 3. Algorithm execution-time (in seconds) 

Cache configuration (sets×ways×line_size) 
Benchmark 512×1×16 256×2×16 128×4×16 64×8×16 
MPEG2 0.15 0.33 0.55 1.04 
FFT 0.08 0.19 0.31 0.60 
JPEG 0.18 0.40 0.70 1.35 
Compress 0.05 0.10 0.15 0.26 
FIR 0.01 0.01 0.02 0.04 
DCT 0.03 0.06 0.12 0.23 
Average 0.08 0.18 0.31 0.59 
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Fig. 11. Saving improvement with technology scaling 

in all cases). Fig. 11 shows the trend in saving results which confirm the increasing 
significance of the approach in future technologies where random within-die Vth 
variation is expected to increase [20] due to random dopant fluctuation which is rising 
when further approaching atomic sizes in nanometer processes. 

Costs of Intra-BB Rescheduling and Register-Renaming. Register-renaming 
imposes absolutely no penalty. Instruction-rescheduling has no impact on instruction-
cache but may in rare cases marginally affect data-cache: since the order and address 
of basic-blocks do not change, instruction cache performance is kept intact. In data 
cache, however, reordering of instructions may change the sequence of accesses to 
data elements, and hence, may change cache behavior. If a miss-causing instruction is 
moved, the hit-ratio is kept, but residence-times (and hence leakage power) of the 
evicted and fetched data items change negligibly. In addition, if two instructions that 
access cache-conflicting data elements change their relative order, the cache hit-ratio 
changes if the originally-first one was to be a hit. This case may also change the data 
that finally remains in the cache after basic-block execution, and hence, potentially 
affects leakage power of the data cache. It is, however, very unlikely to happen when 
noting that due to locality of reference, two conflicting data accesses are unlikely to 
follow closely in time (and in a single BB). In our experiments data cache power and 
performance varied no more than 1%. 

Cost of Cache Initialization. As explained in Section 3, the cache-initialization 
technique consumes some dynamic power to execute the cache-management 
instructions before it can save leakage power. Our implementation of M32R processor 
with two separate 8KB instruction and data caches on a 0.18μ process technology 
consumes 200mW at 50MHz clock frequency. This gives, on average, 4nJ per clock 
cycle or pessimistically 20nJ per instruction in the 5-stage pipelined M32R processor. 
Assuming all 512 cache-lines of the instruction cache are to be initialized, 10.24μJ is 
consumed for cache-initialization. Tviable can now be calculated using the power-
saving values obtained by cache-initialization (Fig. 7). Results are given in Table 4 
which confirm that most often a small fraction of a second is enough to make the 
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initialization technique viable. Even for the worst benchmark, JPEG, a few seconds is 
enough. Assumptions in the estimations were pessimistic to not overestimate benefits: 
(i) processor implementation in a finer technology (e.g. 90nm) would consume less 
dynamic power, (ii) more than one instruction is often in the processor pipeline so 
average power per instruction would be less than 20nJ, (iii) not all cache-lines need to 
be initialized (e.g. for JPEG, only 14 cache-lines remain unused and should be 
initialized). Thus, values in Table 4 should be considered as upper bounds for Tviable. 

Table 4. Estimated Tviable upper bounds for different applications 

 MPEG2 FFT JPEG Compress FIR DCT 
Tviable  (s) 0.590 0.238 3.281 0.117 0.093 0.182 

6   Conclusion 

Our contributions here are (i) observing and analyzing a new opportunity for reducing 
cache leakage in nanometer technologies enabled by the reducing Vth and the 
increasing Vth-variation in such processes, and (ii) presenting first techniques that take 
advantage of this opportunity and reduce leakage up to 54.18% (36.96% on average) 
with negligible impact on system performance. It is important to note that our 
techniques (i) become more effective with technology scaling, (ii) reduce leakage also 
in the normal mode of system operation (in addition to standby mode) even when the 
cache-lines are actively in use, and (iii) are orthogonal to other techniques for leakage 
reduction such as body- and source-biasing. As future work, we are investigating 
techniques similar to garbage-collection so as to invalidate the cache-lines that won’t 
soon have a hit and to store the less-leaky values in them. 
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The Significance of Affectors and Affectees
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Abstract. This work investigates the potential of direction-correlations
to improve branch prediction. There are two types of direction-
correlation: affectors and affectees. This work considers for the first time
their implications at a basic level. These correlations are determined
based on dataflow graph information and are used to select the subset
of global branch history bits used for prediction. If this subset is small
then affectors and affectees can be useful to cut down learning time, and
reduce aliasing in prediction tables. This paper extends previous work
explaining why and how correlation-based predictors work by analyzing
the properties of direction-correlations. It also shows that branch history
selected using oracle knowledge of direction-correlations improves the ac-
curacy of the limit and realistic conditional branch predictors, that won
at the recent branch prediction contest, by up to 30% and 17% respec-
tively. The findings in this paper call for the investigation of predictors
that can learn efficiently correlations from long branch history that may
be non-consecutive with holes between them.

1 Introduction

The ever growing demand for higher performance and technological constraints
drive for many years the computer industry toward processors with higher clock
rates and more recently to multiple cores per chip. Both of these approaches
can improve performance but at the same time can increase the cycle latency
to resolve an instruction, the former due to deeper pipelines and the latter due
to inter-core contention for shared on-chip resources. Longer resolution latency
renders highly accurate conditional branch prediction a necessity because branch
instructions are very frequent in programs and need to be resolved as soon as
they are fetched in a processor to ensure continuous instruction supply.

Today, after many years of branch prediction research and the two recent
branch prediction championship contests [1,2], the accuracies of the state of the
art predictors are high but far from perfect. For many benchmarks the GTL
predictor1 [3] has more than five misses per thousand instructions. Such a rate

� The author contributed to this work while at the University of Cyprus.
1 The winner predictor of the limit track of the 2006 branch prediction contest.

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 243–257, 2008.
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of misprediction, depending on the average branch resolution latency and other
execution overheads, can correspond to a substantial part of the total execution
time of a program. Consequently, we believe there is still a need to further
improve prediction accuracy. The challenge is to determine how to achieve such
an improvement.

In the seminal work by Evers et al. [4] it is shown that choosing more selec-
tively the correlation information can be conducive for improving branch pre-
diction. In particular, using an exhaustive search is determined for a gshare [5]
predictor that only a few, not necessarily consecutive, of the most recent branches
are sufficient to achieve best prediction accuracy. Furthermore, is demonstrated
that a correlation may exist between branches that are far apart. The same
work, introduces two reasons for why global history correlation exists between
branches: direction and in-path correlation, and divides direction-correlations
into affectors and affectees.2 These various types of correlations can mainly be
derived by considering the data and control flow properties of branches. These
causes of correlation are only discussed qualitatively in [4] to explain what makes
two-level branch predictors work, no measurements of their frequency or quan-
tification of their importance are given.

The work by [4] motivated subsequent prediction research with goal the selec-
tive correlation from longer global history. One of the most notable is perceptron
based prediction [7] that identifies, through training, the important history bits
that a branch correlates on. The success of perceptron based prediction pro-
vides a partial justification for the claims by [4] for the importance of selective
correlation. However, it was never established that the dominant perceptron
correlations correspond to direction or in-path correlation and therefore remains
uncertain if indeed such correlations are important or whether predictors exploit
them efficiently.

One other interesting work by [6] investigated the usefulness of affectors
branches, one of the types of direction-correlation introduced by [4] . In [6] the
affector branches are selected dynamically from the global history using data de-
pendence information and are used to train an overriding tagged predictor when
a baseline predictor performs poorly. The experimental analysis, for specific mi-
croarchitectural configurations and baseline predictors, show that this idea can
potentially improve both prediction accuracy and performance. This work also
provides the first concrete evidence that the direction-correlation is an impor-
tant information for prediction. However, [6] did not examine the importance of
affectees.

In this paper we investigate the significance for improving branch prediction ac-
curacy using the two types of direction-correlation: affectors and affectees. Our
analysis is done at a basic level because we assume oracle knowledge of affectors
and affectees with different degrees of precision for detecting the correlations and
without regard to implementation issues. The primary objectives of this paper is
to establish the extent that state of the art predictors learn direction-correlations,

2 In [6] the two types of direction-correlation are referred to as affectors and forerun-
ners.
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and determine how precise the selection of direction-correlations needs to be for
best accuracy. Our evaluation uses the two winning predictors of the limit and re-
alistic track of the recent championship prediction [2] and considers their accuracy
when theyuse the global history as is versus the global historypacked [6] to “ignore”
the positions with no direction-correlation.

Contributions
The key contributions and findings of this paper are:
– A framework that explains why some branches are more important than

others to correlate on. The framework can be used to precisely determine
these branches based on architectural properties.

– An experimental analysis of the potential of direction-correlations for branch
prediction based on oracle knowledge of the correlations.

– An investigation of the position and the number of direction-correlations
reveals that their behavior varies across programs. Also, is very typical for
programs to have branches with the number of correlations ranging from few
branches to several hundreds. The correlations can be clustered together but
also be very far apart, i.e. correlations may not be consecutive and can have
holes between them. Affectees are found to be more frequent than affectors.

– Demonstrate that for best accuracy both affectors and affectees correlations
are needed. Their use can provide accuracy improvements of up to 30% for
the limit predictor, and 17% for the realistic predictor

– Show that it is crucial to consider direction-correlations that are detectable
by tracking dependences through memory.

– Establish a need to further study predictors that can learn correlation pat-
terns with and without holes from long branch history.

The remaining of the paper is organized as follows. Section 2 defines what af-
fectors and affectees correlations are and discusses parameters that influence
the classification of a branch as correlating. Section 3 presents the experimental
framework. Section 4 discusses the experimental results of this study and estab-
lishes the significance of affectors and affectees. Section 5 discusses related work.
Finally, Section 6 concludes the paper and provides directions for future work.

2 Affectors and Affectees

This section defines what affector and affectee branches are and provides intu-
ition as to why these are important branches to select for correlation. It also
discusses how the treatment of memory instructions influence the classification
of a branch as an affector or affectee of another branch. Finally, a discussion is
presented on how this correlation information can be used for prediction. Part
of this discussion is based on earlier work [4,6].

2.1 Definitions and Intuition

Affectors: A dynamic branch, A, is an affector for a subsequent dynamic branch,
B, if the outcome of A affects information (data) used by the subsequent branch B.
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Fig. 1. (a) Example control flow graph, (b) affector graph, (c) affectee graph and (d)
affector plus affectee graph

Affectors are illustrated using the example control flow graph in Fig. 1.a. Assume
that the (predicted) program order follows the shaded basic blocks and we need to
predict the branch in the basic block 7. The affector branches are all those branches
that steer the control flow to the basic blocks that contain instructions that the
branch, in basic block 7, has direct or indirect data dependence. Effectively, the
selected affector branches can be thought of as an encoding of the data flow graph
leading to the branch to be predicted (this affector data flow graph is shown in
Fig. 1.b). Predictors may benefit by learning affector correlations because when
branches repeatwith the samedataflowgraph theywill likely go the samedirection.
Furthermore, affector correlations use a more concise branch history to capture
the data flow graph leading to a branch and thus reduce learning time and table
pressure for training a predictor.

Affectees: A dynamic branch, A, is affectee of a subsequent dynamic branch, B,
if A is testing the outcome of an instruction C that can trace a data dependence
to an instruction D in the data flow graph leading to B.3 The direction of an
affectee branch encodes, usually in a lossy manner, the value produced or yet
to be produced by D. In the example in Fig. 1.a there are two affectees. One
of the affectees is also an affector. In effect, affectees provide an encoding for
values consumed or produced in the dataflow graph leading to the branch to
be predicted. For example, the affectee branch in BB 4 tell us whether or not

3 C and D can be the same instruction.
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the value loaded from memory in BB2 is 1. The affectee data flow graph for the
example in Fig. 1.a is shown in Fig. 1.c.

Combo: It is evident that the combination of affectors and affectees can be more
powerful than either correlation alone since affectees can help differentiate be-
tween branches with the same data affector data flow graphs but different input
values. Similarly, affectors can help distinguish between same affectee graphs
that correspond to different affector graphs. The combined affector and affectee
data flow graph of our running example is shown in Fig. 1.d.

Section 4 investigates how the above types of correlations affect branch predic-
tion accuracy. We believe that existing predictor schemes are able to learndata flow
graphs, as those shown in Fig. 1, but they do this inefficiently using more history
bits than needed. Therefore, they may suffer from cold effects and more table pres-
sure/aliasing.Our analysis will establish how much room there is to improve them.

2.2 Memory Instructions

An important issue that influences whether a branch is classified as having a
direct-correlation to another branch is the handling of memory instructions. For
precise knowledge of the direct-correlations data dependences need to be tracked
through memory. That way a branch that has a dependence to a load instruc-
tion can detect correlation to other branches through the memory dependence.
Although, tracking dependences through memory is important for developing a
better understanding for the potential and properties of affectors and affectees
correlations, it may be useful to know the extent that such precise knowledge is
necessary. Thus may be interesting to determine how well predictors will work
if memory dependences correlations are approximated or completely ignored.

We consider two approximations of memory dependences. The one tracks de-
pendence of address operands ignoring the dependence for the data. And the
other does not consider any dependences past a load instruction, i.e. limiting a
branch to correlations emanating from the most recent load instructions leading
to the branch. These two approximations of memory dependences need to track
register dependences whereas the precise scheme requires maintaining depen-
dences between stores and load through memory. We will refer to the precise
scheme of tracking dependences as Memory, and to the two approximations as
Address, and NoMemory. In Section 4 we will compare the prediction accuracy
of the various schemes to determine the importance of tracking accurately cor-
relations through memory.

For the Memory scheme we found that is better to not include the address
dependences of a load when a data dependence to a store is found (analysis
not presented due to limited space). This is reasonable because the correlations
of the data encode directly the information affecting the branch whereas the
address correlations are indirect and possibly superfluous

Recall that our detection algorithm of correlations is oracle. It is based on
analysis of the dynamic data dependence graph of a program. The intention of
this work is to establish if there is potential from using more selective correlation.
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2.3 How to Use Affectors and Affectees for Prediction

Based on the findings of this paper one can attempt to design a predictor
grounds-up that exploits the properties exhibited by affectors and affectees cor-
relations. That is also our ultimate goal and hopefully this paper will serve as a
stepping stone in that direction. This is however may be a non-trivial task and
before engaging in such a task may be useful to know if it is a worthwhile effort.

Therefore, in this paper we decided to determine the potential of affectors and
affectees using unmodified existing predictors. We simply feed these predictors
with the complete global history and with the history selected using our oracle
affectors and affectees analysis and compare their prediction accuracy. If this
analysis reveals that the selective correlations have consistently and substantially
better accuracy then may be worthwhile to design a new predictor.

The only predictor design space option we have is how to represent the selected
bits in the global history register. In [6] they were confronted with a similar
problem and proposed the use of zeroing and packing. Zeroing means set a history
bit to zero if it is not selected while branches retain their original position in the
history register. Packing moves all the selected bits to the least significant part of
the history register while other bits are set to zero. Therefore, in packing selected
branches lose their original position but retain their order. Our experimental
data (not shown due to space constraints) revealed that packing had on average
the best accuracy and is the representation we used for the results reported in
Section 4.

Our methodology for finding the potential of affectors and affectees may be
suboptimal because it uses an existing predictor without considering the prop-
erties exhibited in the global history patterns after selection. Another possible
limitation of our study has to do with our definition of affectors and affectees.
Alternative definitions may lead to even more selective and accurate correla-
tions. For instance by considering only affectees that trace dependences to load
instructions. These and other limitations to be found may lead to increased po-
tential and thus the findings of this study should be view as the potential under
the assumptions and constraints used in the paper.

3 Experimental Framework

To determine the potential of affectors and affectees to increase branch prediction
accuracy we used a functional simulation methodology using a simplescalar [8]
derived simulator. A subset of SPEC2000 and SPEC95 benchmarks, listed in
Table 1, are used for our analysis. For the SPEC2000 benchmarks the early
regions identified by sim-point [9] are used, whereas for SPEC95 complete runs
of modified reference inputs are executed.

The eight integer benchmarks were chosen because they exhibited the higher
misprediction rates in the two suites for a 32KB L-Tage predictor. We did not
include the gzip benchmark because the memory requirements of this benchmark
to track dependences, affectors and affectees were very large. The FP benchmarks
are included as typical representatives of benchmarks with low misprediction
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Table 1. Benchmarks

SPECINT CPU2000 bzip200, crafty00, mcf00, twolf00, vpr00
SPECFP CPU2000 ammp00, fma3d00, mesa00
SPECINT CPU95 gcc95, go95, ijpeg95

rates to ensure that selective correlations does not hurt these benchmarks and
to analyze if their correlation patterns are any different from integer or more
difficult to predict benchmarks.

Two predictors are used in the experimentation: a 32KB L-TAGE [10] pre-
dictor with maximum history length of 400 bits, and the GTL [3] predictor with
400 maximum history length for the GEHL component and 100000 maximum
history length for the TAGE component.

For the experiments where selective correlation is used, the selection is applied
to the 400 bit global history of the L-TAGE predictor and to the 400 bit history
used to access the GEHL component of the GTL predictor. Selection was not
used for the TAGE component of GTL because the memory requirements re-
quired to track affectors and affectees for a 100000 global history were extremely
large and beyond the memory capacities of todays servers.

The detection of affectors and affectees is oracle using the dynamic data flow
graph of a program. For memory instructions, unless stated otherwise, the default
policy is to track correlations past memory dependences.

The algorithm used to determine affectors is the simple approximation pro-
posed in [6]. A dynamic branch is an affector, of a branch to be predicted, if
it is the last, in the dynamic program order, branch that executed before an
instruction in the dataflow graph of the branch to be predicted. The algorithm
used for detecting affectees is not presented due to space limitations.

4 Results

We present three sets of results, the first analyzes the properties of affectors and
affectees, the second discusses the accuracy of the GTL predictor, and the third
shows the accuracy of the L-TAGE predictor

4.1 Characterization of Affectors and Affectees

Fig. 2 and 3 show the cumulative distribution of dynamic branches according
to the number of affector and affectee correlations they have. The number of
correlations can not exceed 400 since we consider only correlations from the
400 most recent branches. We decided to analyze the behavior for the 400 most
recent branches since the two predictors used in the study use a 400 entry global
branch history register.

The results reveal that branches usually have much fewer affectors than af-
fectees. For most benchmarks 90% of the branches have at most 30 affectors.
According to the definition of affectors, this means that the computation that
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Fig. 3. Affectees distribution

determines the outcome of a branch can be found in less than 30 out of the most
recent 400 basic blocks preceded by a conditional branch. The outlier is mcf
where many branches have large number of affectors. The data about affectees
correlations show clearly that for most programs 50% of the branches have 30
or more affectees. This means that a branch frequently checks information that
partially or fully has been tested by at least 30 other out of the 400 most recent
branches. The data also show few benchmarks, bzip, ijpeg, vpr to have 300 or
more affectee correlations. It is noteworthy that mcf00, that has branches with
many affectors, has also many branches, about 50%, with 0 affectees. This oc-
curs because mcf loads and tests data from many memory locations where no
correlation to the producers can be found within the least 400 branches. The
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Fig. 4. Most frequent correlation patterns for (a)twolf00, (b)bzip00 and (c)ammp00

graph (not shown due to space) for the distribution of the branches when we
consider both affectors and affectees is very similar to the one for the affectees.

Overall the data show that for ALL benchmarks there are many branches that
have much less than maximum number correlations. Provided: (a) affectors and
affectees are the dominant types of correlation that predictors need to learn, and
(b) existing predictors are unable to use only the relevant part of history, then
these data suggest that there may be room for improving prediction.

In Fig. 4 we attempt to give more insight by presenting the dominant pat-
terns of correlation when we consider the combination of affectors and affectees.
The figure shows for three benchmarks, twolf, bzip and ammp what are the most
frequent 1000 patterns of correlations. To help the reader we present these top
patterns sorted from top to bottom according to the oldest position with a cor-
relation (i.e. the most recent correlation position is to the right). The curve that
cut-across each graph represents from top to bottom the cumulative branch dis-
tribution of the patterns. This line is not reaching 100% since we only display
the top 1000 patterns. A given pattern has a gray and white part representing
the bit positions with and without correlations. To help the reader we present
patterns with 100 positions where each position corresponds to 4 bits (a position
is set to one if any of its corresponding four bits is set). These three graphs are
representative of 10 of the 11 benchmarks we considered in this paper. Bench-
mark twolf is representative of crafty, vpr, mesa, gcc and go, bzip of mcf and
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ijpeg, and both ammp and fma3d have distinct behaviors. We define the length
of a correlation pattern to be the oldest position with a correlation.

One of the main observation from these data is that branch correlations are
not always consecutive, there are holes between correlated branches. These holes
can be of any size and a given correlation pattern can have one or more holes. The
hole behavior varies across benchmarks, for twolf like benchmarks is dominant
whereas for bzip like benchmarks they occur less frequently. Within a benchmark
there can be both sparse and dense patterns.

More specifically, the results indicate that virtually always correlation patterns
include at least few of the most recent branches (for each benchmark almost all
patterns have at the right end - most recent branches - few positions set). Also, it
is observed across almost all benchmarks that for a given correlation length the
pattern with all positions set is very frequent. However, for twolf like benchmarks
many patterns have correlations that occur at the beginning and at the end of the
pattern with all the branches in the middle being uncorrelated. Another remark
for bzip and ammp like benchmarks, is that many branches with correlations
distributed over all 100 positions (bottom pattern in Fig. 4 for bzip and ammp
accounts for over 40% of the patterns). Provided it is important to predict by
learning precisely the above correlations, the results suggest that there is a need
for predictors that can learn efficiently patterns with holes.

Another key observation from Fig. 4 is that correlation patterns occur usually
across all history lengths. These underlines the need for predictors to be capable
of predicting with variable history length. The distribution of patterns according
to length (not shown due to space limitations) is similar to the affectees distri-
bution in Fig. 3 with a slight shift toward the bottom right corner. Assuming is
important to learn precisely the correlation patterns, the exponential like cumu-
lative distributions of correlation lengths, for most benchmarks, suggests that
most prediction resources should be devoted to capture correlations with short
history length and incrementally use less resources for longer correlations. This
observation clearly supports the use of geometric history length predictors [11].

The above observations may represent a call for predictors that can handle
both geometric history length and holes. As far as we know no such predictor
exists today. In the next section we attempt to establish the potential of such a
predictor using two existing geometric history length predictors that are accessed
with selected history, with holes, using oracle affectors and affectees correlations.

4.2 GTL Results

Fig. 5 shows the accuracy of the GTL predictor when accessed with full global
history, only with affectors correlations, only with affectees, and with the combi-
nation of affectors and affectees. The data show that the combination of affectors
and affectees provides the best performance. It is always the same or better than
GTL and almost always better than each correlation separately. The exception is
vpr00 where the combination does slightly worse than using only affectors. This
can happen when the one type of correlation is sufficient to capture the program
behavior and the use of additional information is detrimental. The improvement
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provided by combining affectors and affectees is substantial for several bench-
marks and in particular for crafty, gcc, go, ijpeg, twolf, and vpr it ranges from
15% to 30%. For the remaining paper we present results for experiments that
combine affectors and affectees since they provide the best overall accuracy.

The data clearly support the claim by [4] that direction-correlation is one of
the basic types of correlations in programs that predictors need to capture.

Fig. 6 shows the prediction accuracy when we combine affectors and affectees
but with no correlations through memory. For each benchmark we present three
results, the GTL predictor with full history, the affectors and affectees with no
correlations past load instructions (NoMemory), and with correlations past load
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instructions using their address dependences (Address). The data show that
there is very little improvement to be gain when we do not consider correla-
tions through memory dependences. The data indicate that an approximation
of memory dependences using addresses dependences offers very little improve-
ment. This underlines that important correlations from the data predecessors of
load instructions are needed for improved accuracy.

The data show that selective correlation using the combination of affectors
and affectees can provide substantial improvement in prediction accuracy. The
results also show that correlations past memory instructions are important and
that address dependences provide a poor approximations of the data dependence
correlations. Overall, we believe the data suggest that may be worthwhile inves-
tigating the development of a predictor that is capable of learning correlations
from long history with holes. These conclusions are true for GTL an unreal-
istically large predictor that demonstrate that the improvements are not mere
accident but due to basic enhancements in the prediction process. However, we
are interested to know if these observations hold for a realistic predictor. Next
we consider selective correlation for a 32KB L-TAGE predictor.

4.3 L-TAGE Results

Fig. 7 shows the prediction accuracy for a 32KB L-TAGE when accessed us-
ing the complete global history (L-TAGE) and with selective history using the
combination of affectors and affectees (Combo). The results show that selective
correlation with affectors and affectees can also improve the accuracy of the L-
TAGE predictor at a realistic size. The amount of improvement is significant for
several benchmarks. In particular, for gcc, ijpeg, and vpr is above 15% (for vpr
17%). We believe that these improvements call for the design of a predictor that
can exploit direct-correlations.
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The amount of improvements for L-TAGE are smaller as compared to GTL.
However, one should recall that GTL is a completely different predictor not
simply a bigger L-TAGE predictor. We also performed analysis of the importance
of correlations through memory and the data suggest, similarly to GTL, that it
is necessary to include such correlations for better accuracy.

5 Related Work

Since Smith [12] proposed the first dynamic table based branch predictor, inno-
vation in the field of prediction has been sporadic but steady. Some of the key
milestones are: correlation-based prediction [13] that exploits the global and or
local correlation between branches, hybrid prediction [5] that combines different
predictors to capture distinct branch behavior, variable history length [14] that
adjusts the amount of global history used depending on program behavior, the
use of perceptrons [7] to learn correlations from long history, geometric history
length prediction [11] that employs different history lengths that follow a geo-
metric series to index the various tables of a predictor, and partial tagging [15]
of predictor table entries to better manage their allocation and deallocation. The
above innovations have one main theme in common: the correlation information
used to predict a branch is becoming increasingly more selective. This facilitates
both faster predictor training time and less destructive aliasing. Our paper ex-
tends this line of work and shows that there is room for further improvement if
we could select correlations with holes out of long history.

In two recently organized branch prediction championships [1,2] researchers
established the state of the art in branch prediction. In 2006, the L-TAGE global
history predictor [10] was the winner for a 32KB budget. L-TAGE is a multi-table
predictor with partial tagging and geometric history lengths that also includes
a loop predictor. In the 2006 championship limit contest the GTL predictor [3]
provided the best accuracy. GTL combines GEHL [11] and L-TAGE predictors
using a meta-predictor. The GEHL global history predictor [11] employs multiple
components indexed with geometric history length. Our paper uses the L-TAGE
and GTL predictors to examine our ideas to ensure that observations made are
not accidental but based on basic principles. The use of longer history is central
to these two predictors and the analysis in this paper confirmed the need and
usefulness for learning geometrically longer history correlations.

Several previous paper explored the idea of improving prediction by encoding
the data flow graphs leading to instructions to be predicted. They use infor-
mation from instructions in the data flow graph [16,17,18,19,20], such as op-
codes, immediate values, and register names, to train a predictor. Effectively
these papers are implementing variations of predictors that correlate on affector
branches. In [20], they consider using the live in values of the dataflow graphs
when they become available and in [17] they examined the possibility of predict-
ing such values. The inclusion of actual or predicted live-in values is analogous to
the correlation on affectee branches of such values, since the predicted or actual
outcome of affectee branches represents an encoding of the live-in values.
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Mahlke and Natarajan [21] use static dataflow information to determine vari-
ables that may influence the outcome of a branch and then performed profiling
analysis on these variable to determine simple correlation functions between the
values of the variables and the branch outcome. Instructions are inserted in the
code to compute the branch direction. In our view, this work also attempts
to implement a variation of affectors and affectees correlation since a function
supplies analogous information to what can be provided by affectee branches.

A return-history-stack [22] is a method that can introduce holes in the branch
history. In broad terms, a return history stack pushes in a stack the branch
history register on a call and recovers it on a return, thus introducing holes in the
history. A return history stack was shown to be useful for a trace predictor [22]
and offered modest improvements for a direction branch predictor [23]. This
suggests that there are many cases where branches executed in a function are
often no significant correlators to branches executed after the function return.

6 Conclusions and Future Work

In this paper we investigate the potential of selective correlation using affectors
and affectees branches to improve branch prediction. Experimental analysis of
affectors and affectees revealed that many branches have few correlations and
often the correlations have holes between them. Prediction using selective cor-
relation, based on oracle selection of affectors and affectees, is shown to have
significant potential to improve accuracy for a both a limit and a realistic pre-
dictor. The analysis also shows that correlations past memory instruction are
needed for best accuracy. Overall, our study suggests that may be worthwhile
to consider the design of a realistic predictor that can exploit the properties
exhibited by affectors and affectees correlation patterns by learning correlations
with and without holes from long history. Another possible direction of future
work, is to apply the findings of this paper to static branch prediction, and to
other types of predictors, such as values and dependences.
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Turbo-ROB: A Low Cost Checkpoint/Restore
Accelerator

Patrick Akl and Andreas Moshovos
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Abstract. Modern processors use speculative execution to improve per-
formance. However, speculative execution requires a checkpoint/restore
mechanism to repair the machine’s state whenever speculation fails. Ex-
isting checkpoint/restore mechanisms do not scale well for processors
with relatively large windows (i.e., 128 or more). This work presents
Turbo-ROB, a checkpoint/restore recovery accelerator that can com-
plement or replace existing checkpoint/restore mechanisms. We show
that the Turbo-ROB improves performance and reduces resource require-
ments compared to a conventional Re-order Buffer mechanism. For ex-
ample, on the average, a 64-entry TROB matches the performance of
a 512-entry ROB, while a 128- and a 512-entry TROB outperform the
512-entry ROB by 6.8% and 9.1% respectively. We also demonstrate that
the TROB improves performance with register alias table checkpoints ef-
fectively reducing the need from more checkpoints and the latency and
energy increase these would imply.

1 Introduction

Modern processors use control flow speculation to improve performance. The pro-
cessor does not wait until the target of a control flow instruction is calculated.
Instead, it predicts a possible target and speculatively executes instructions at
that target. To preserve correctness, recovery mechanisms restore the machine’s
state on mispeculation. Recovery involves reversing any changes done by the
incorrectly executed instructions and resuming execution at the correct target
instruction. Modern processors utilize two such recovery mechanisms. The first
is the reorder buffer (ROB) which allows recovery at any instruction in addition
to mispeculated branches. Recovering from the ROB amounts to squashing, i.e.,
reversing the effects of each mispeculated instruction, a process that requires
time proportional to the number of squashed instructions. The second recovery
mechanism uses a number of global checkpoints (GCs) that are allocated prior to
executing a branch and in program order. A GC contains a complete snapshot of
all relevant processor state. Recovery at an instruction with a GC is “instanta-
neous”, i.e., it requires a fixed, low latency. GCs are typically embedded into the
Register Alias Table (RAT) since virtually all other processor structures do not
need a checkpoint/restore mechanism for most of their resources (they maintain
a complete record of all in-flight instructions and thus recovery is possible by
simply discarding all erroneous entries).

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 258–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Ideally, a GC would be allocated at every instruction such that the recovery
latency is always constant. In practice, because the RAT is a performance critical
structure only a limited number of GCs can be implemented without impacting
the clock cycle significantly and thus reducing overall performance. For example,
RAT latency increases respectively by 1.6%, 5%, and 14.4% when four, eight,
and 16 GCs are used relative to a RAT with no GCs for a 512-entry window 4-
way superscalar processor with 64 architectural registers and for a 130nm CMOS
commercial technology [12]. Recent work suggested using selective GC allocation
to reduce the number of GCs necessary to maintain high performance [2,1,5,11].
Even with these advances, at least eight and often 16 GCs are needed to maintain
performance within 2% of that possible with an infinite number of checkpoints
allocated at all branches with a 256-entry or larger window processor. These
GCs increase RAT latency and the clock cycle and thus reduce performance.
Moreover, RAT GCs increase RAT energy consumption. This is undesirable as
the RAT exhibits high energy density. Accordingly, methods for reducing the
number of GCs or for eliminating the need for GCs altogether would lead to
improved performance and avoid an increase in power density in the RAT.

This work proposes Turbo-ROB, or TROB, a checkpoint recovery accelerator
that can complement or replace the ROB and the GCs. The TROB is off the
critical path and as a result its latency and energy can be tuned with greater
flexibility. The Turbo-ROB is similar to the ROB but it requires a lot fewer
entries since the TROB only stores information necessary to recover at a few
selected branches, called repair points. Specifically, the TROB stores recovery
information for the first update to each register after a repair point. Because
programs tend to reuse registers often, many instructions are ignored by the
TROB. In contrast, the ROB stores information for all instructions because
it allows recovery at any instruction. While the ROB is a general mechanism
that treats all recoveries as equal, the TROB is optimized for the common case
of branch-related recoveries. The TROB can be used to accelerate recovery in
conjunction with a ROB or GCs, or it can be used as a complete replacement
for the ROB and the GCs. Unlike previous proposals for reducing the recovery
latency, the Turbo-ROB does not require modifications to the RAT.

This paper makes the following contributions: (1) It proposes “Turbo-ROB”,
a ROB-like recovery mechanism that requires less resources than the ROB and
allows faster recovery on the frequent case of control flow mis-speculations. Given
that the TROB is off the critical path it alleviates some of the pressure to scale
the register alias table and the re-order buffer. (2) It shows that the TROB
can be used to improve performance over a ROB-only recovery mechanism. (3)
It shows that the TROB can replace a ROB offering performance that is close
to that possible with few GCs. Eliminating the ROB is desirable since it is
an energy and latency inefficient structure [2]. (4) It shows that the TROB
improves performance even when used with a GC-based recovery mechanism.
More importantly, the TROB reduces GC pressure allowing implementations
that use very few GCs. For example, the results of this paper demonstrate that
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Fig. 1. Given an instruction to recover at, it is not always necessary to process all
subsequent instructions recorded in the ROB

a TROB with one GC performs as well as an implementation that uses four GCs.
A single GC RAT implementation is simpler than one that uses more GCs.

The rest of this paper is organized as follows: Section 2 presents the TROB
design. Section 3 reviews related work. Section 4 presents the experimental anal-
ysis of TROB. Finally, Section 5 concludes this work. In this paper we restrict
our attention to recovery from control flow mispeculation. However, the TROB
can also be used to recover from other exceptions such as page faults. In the
workloads we study these exceptions are very infrequent. We also focus on rel-
atively large processors with up to 512-entry instruction windows. However, we
do demonstrate that the TROB is beneficial even for smaller window processors
that are more representative of today’s processor designs. We note, however, that
as architects are revisiting the design of large window processor simplifying the
underlying structures and as multithreading becomes commonplace it is likely
that future processors will use larger windows.

2 Turbo-ROB Recovery

For clarity, we initially restrict our attention to using the TROB to complement a
ROB recovery mechanism. In Sections 2.4 and 2.5 we discuss how the TROB can
be used without a ROB or with GCs respectively. The motivation for Turbo-ROB
is that not all instructions inserted in the ROB are needed for every recovery.
We motivate the Turbo-ROB design by first reviewing how ROB recovery works.

The ROB maintains a log of all changes in program order. Existing ROB de-
signs allocate one entry per instruction in the window. Each ROB entry contains
sufficient information to reverse the effects of the corresponding instruction. For
the RAT it is sufficient to keep the architectural register name and the previous
physical register it mapped to. On a mis-speculation, all ROB entries for the
wrong path instructions are traversed in reverse program order. While the ROB
design allows recovery at any instruction, given a specific instruction to recover
at, not all ROB entries need to be traversed. Specifically, for every RAT entry,
only the first corresponding ROB entry after the mispredicted branch is needed.
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Fig. 2. Turbo-ROB organization. This figure assumes that the Turbo-ROB comple-
ments a ROB.

Moreover, branch instructions occupy ROB entries but do not modify the RAT.
Figure 1 illustrates via an example these two points. The branch instruction
A is mispredicted and the wrong path instructions B to E are fetched and de-
coded before the misprediction is discovered. The ROB-only recovery mechanism
traverses the ROB entries 5 to 2 in reverse order updating the RAT. However,
traversing just the entries 3 and 2 is sufficient: Entry 5 contains no state informa-
tion since it corresponds to a branch; entry 4 corresponding to R2 at instruction
D can be ignored because the correct previous mapping (P2) is preserved by
entry 2. A mechanism that exploits these observations can reduce recovery la-
tency and hence improve performance. The TROB mechanism presented next,
exploits this observation. To do so, it allows recovery only on branches and relies
on the ROB or in re-execution as in [2] to handle other exceptions.

2.1 Mechanism: Structure and Operation

We propose TROB, a ROB-like structure that requires fewer resources. TROB
is optimized for the common case and thus allows recovery at some instructions,
which we call repair points. The TROB records a subset of the information
recorded in the ROB. Specifically, given a repair point B, the TROB contains
at most one entry per architectural register corresponding to the first update to
that register after B. Recoveries using the TROB are thus potentially faster than
ROB-only recoveries. To ensure that recovery is still possible at all instructions
(for handling exceptions), a normal ROB is used as a backup.

Figure 2 shows that the TROB is an array of entries that are allocated and
released in program order. Each entry contains an architectural register identifier
and a previous RAT map. Thus, for an architecture with X architectural registers
and Y physical registers, each TROB entry contains log2X + log2Y bits. A
mechanism for associating TROB entries with the corresponding instructions
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Fig. 3. Turbo-ROB recovery scenarios when repair points are initiated at all branches.
a) Common scenario: recovery at any mispredicted branch uses only the fast Turbo-
ROB. b) Infrequent scenario: recovery at any other instruction is supported using the
Turbo-ROB and the ROB.

is needed. In one possible implementation, each TROB entry contains a ROB
pointer. Thus an extra log2A bits per TROB entry are needed for an architecture
with an A-entry reorder buffer. Detection of the first update to each register
after a repair point is performed via the help of a single “Architectural Register
Bitvector” (ARB) of size equal to the number of architectural registers (X bits).
A “TROB modify” (TM) bit array with as many bits as the number of ROB
entries is used to track which instructions in the ROB allocated a TROB entry.
This is needed to keep the TROB in a consistent state.

Updating the Turbo-ROB: In our baseline design, repair points are initiated
at all branches. Following a repair point, we keep track of the nearest subsequent
previous RAT map for every RAT entry in the TROB. The ARB records which
architectural registers have had their mapping in the RAT changed since the last
repair point. The ARB is reset to all-zeros at every repair point and every time a
TROB entry is created the corresponding ARB bit is set. TROB entries are cre-
ated only when the corresponding ARB is zero. Finally, the corresponding TM is
set, indicating that the corresponding instruction in the ROB modified the TROB.
The TM facilitates in-order TROB deallocation whenever an instruction commits
or is squashed. If the TROB has less entries than the ROB, it is possible to run
out of free TROB entries. The base implementation stalls decode in this case.

Recovery: There are two recovery scenarios with the TROB: Figure 3(a) shows
the first scenario where we recover at an instruction with a repair point. RAT
recovery proceeds by traversing the TROB in reverse order while updating the
RAT with the previous mappings. Figure 3(b) shows the second recovery scenario
where we recover at an instruction without a repair point. In the base design that
allocates repair points for all branches, this scenario is not possible for branches
and applies only to other exceptions. Accordingly, this will happen infrequently.
We first quickly recover the RAT partially at the closest subsequent TROB repair
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Fig. 4. Example of recovery using the Turbo-ROB: repair points are initiated at
instructions A and F. Recovering at A requires traversing entries 3 to 0 in the TROB.
The physical register free list is recovered by traversing entries 7 to 0 in the PDRL.

point. We then complete the recovery using the ROB, starting at the instruction
corresponding to the repair point at which partial recovery took place. If no such
repair point is found, we rely solely the ROB for recovery.

Reclaiming Physical Registers: Since the TROB contains only first up-
dates, it can’t be used to free all the physical registers allocated by wrong path
instructions. We assume that the free register list (FRL) contains embedded
checkpoints which are allocated at repair points. The free register list is typi-
cally implemented as a bit vector with one bit per register. Accordingly, check-
points similar to those used for the RAT can be used here also. Since the FRL is
a unidimensional structure embedding checkpoints does not impact its latency
greatly as it does in the RAT. Upon commit, an instruction freeing a register,
must mark it as free in the current FRL and in all active checkpoints by clearing
all corresponding bits. Assuming that these bits are organized in a single SRAM
column, clearing them requires extending the per column reset signal over the
whole column plus a pull-down transistor per bit.

2.2 Recovery Example

Figure 4 illustrates an example of recovery using the TROB. Following the de-
code of branch A, instructions B and C perform first updates of RAT entries R2
and R3 and allocate TROB entries 0 and 1. The ARB is reset at instruction F
and new TROB entries are allocated for instructions G and H, which perform
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new first updates to the RAT entries R1 and R2. If branch A is mispredicted,
recovery proceeds in reverse order starting from the TROB head (entry 3) and
until entry 0 is reached. Recovering via the ROB would require traversing seven
entries as opposed to the four required by the TROB. If branch F was mispre-
dicted, recovery would only use TROB entries 3 and 2. If instruction C raised
an exception, recovery proceeds using the ROB by traversing entries 7 to 3 in
reverse order. Alternatively, we could recover by first recovering at the closest
subsequent repair point using the TROB (recovering at instruction F by using
the TROB entries 3 and 2) and then use the ROB to complete the recovery (by
using ROB entries 4 to 3).

2.3 Selective Repair Point Initiation

Our baseline mechanism initiates repair points at all branches. Creating repair
points less frequently reduces the space requirements for the TROB and makes
TROB recovery faster. In the example shown in Figure 4, not creating a TROB
repair point at branch F reduces TROB pressure since instruction H would not
be saved. Since TROB entry 3 would not be utilized, repairing the RAT state
using the TROB if instruction A was mispredicted would be faster. However, if
F was mis-speculated then we would have to use the slower ROB to recover. To
balance between decreasing the utilization and the recovery latency of the TROB
on one side, and increasing the rate of slow recoveries that do not utilize solely
the TROB on the other side, we can selectively create repair points at branches
that are highly likely to be mispredicted. Confidence estimators dynamically
identify such branches. Zero-cost confidence estimation has been show to work
well with selective RAT checkpoint allocation [11]. In the rest of this study, we
refer to the method that uses selective repair point initiation as sTROB.

2.4 Eliminating the ROB

The TROB can be used as a complete replacement for the ROB. In one design,
the TROB replaces the ROB and repair points are initiated at every branch. In
this case, recovery is possible via the TROB at every branch. Other exceptions
can be handled using re-execution and a copy of the RAT that is updated at
commit time. This policy was suggested by Akkary et al. [2] for a design that
used only GCs and no ROB. To guarantee that every branch gets a repair point
we stall decode whenever the TROB is full and a new entry is needed. This design
artificially restricts the instruction window. However, as we show experimentally,
this rarely affects performance. Alternatively, we can allow some branches to
proceed without a repair point, or to abandon the current repair point and rely
instead on re-execution as done for other exceptions.

In another design, the TROB replaces the ROB but repair points are initiated
only on weak branches as predicted via a confidence estimation mechanism. In
this design, it is not always possible to recover via the TROB. Whenever no
repair point exists, we rely instead on re-execution from an earlier repair point
or from the beginning of the window.



Turbo-ROB: A Low Cost Checkpoint/Restore Accelerator 265

2.5 TROB and In-RAT Global Checkpoints

Finally, the TROB can be used in conjunction with GCs with or without a ROB.
If a ROB is available, recovery proceeds first at the nearest subsequent GC or
repair point via the GCs or the TROB respectively. Then, recovery completes via
the ROB. If no ROB is available, recovery first proceeds to the nearest earlier GC
or repair point. Recovery completes by re-executing the intervening instructions
as in [2]. In this paper we study the design that combines a TROB with few GCs
and a ROB.

3 Related Work

Mispeculation recovery has been extensively studied in the literature. Related
work can be classified into the following categories: 1) Reducing the mispecu-
lation recovery latency, 2) Confidence estimation for speculation control, and
3) Multipath execution and instruction reuse. Due to space limitations, we re-
strict our attention to the first two categories noting that in principle the TROB
is complementary to techniques in the third category.

Reducing the Mispeculation Recovery Latency: Aragon et al. analyzed
the causes of performance loss due to branch mispredictions [3] and found that
the pipeline-fill penalty is a significant source of performance loss due to mispre-
dictions. The TROB reduces a significant component of this latency.

The Reorder Buffer, originally proposed by Smith and Pleszkun, is the tra-
ditional checkpointing mechanism used to recover the machine state on mispre-
dictions or exceptions [13]. As previous studies have shown, recovering solely
using the reorder buffer incurs significant penalties as the processor window in-
creases [2,1,11,16]. To alleviate this concern, non-selective in-RAT checkpointing
has been implemented in the MIPS R10000 processor [15]. Moshovos proposed an
architecture where the reorder buffer is complemented with GCs taken selectively
at hard-to-predict branches to reduce the GC requirements for large instruction
window processors [11]. Akkary et al. proposed an architecture that does not
utilize a reorder buffer and instead creates GCs at low confidence branches [2,1].
Recovery at branches without a GC proceeds by recovering at an earlier GC
and re-executing instruction up until the mis-speculated branch. As we show in
this paper, the TROB can be used in conjunction with in-RAT checkpointing.
Modern checkpoint/recovery mechanisms have evolved out of earlier proposals
for supporting speculative execution [7, 13, 14].

Zhou et al. proposed Eager Misprediction Recovery (EMR), which allows some
instructions whose input registers’ map were not corrupted to be renamed in
parallel with RAT recovery [16]. While the idea is attractive, the implementation
complexity has not been shown to be low. While Turbo-ROB can in principle be
used with this approach also, this investigation is left for future work.

Confidence Estimation for Speculation Control: Turbo-ROB relies on
a confidence estimator for identifying weak branches. Manne et al. propose
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throttling the pipeline’s front end whenever too many hard-to-predict branches
are simultaneously in-flight for energy reduction [10]. Moshovos proposed used
a similar estimator based on the bias information from existing branch predic-
tors, for selective GC allocation [11]. Jacobsen et al. proposed a more accurate
confidence estimator whose implementation requires explicit resources [8]. This
confidence estimator was used by Akkary et al. for GC prediction [2, 1] and by
Manne et al. for speculation control [10]. Jimenez and Lin studied composite
confidence estimators [9].

4 Experimental Results

Section 4.1 discusses our experimental methodology and Section 4.2 discusses the
performance metric used throughout the evaluation. Section 4.3 demonstrates
that TROB can completely replace the ROB offering superior performance with
less resources. Section 4.4 studies the performance of a TROB with a backing
ROB. Finally, Section 4.5 demonstrates that TROB improves performance with
a GC-based configuration. For the most part we focus on a 512-entry instruc-
tion window configuration. We do so since this configuration places much higher
pressure on the checkpoint/recovery mechanism. However, since most commer-
cial vendors today are focusing on smaller windows we also show that TROB is
useful even for smaller window processors.

4.1 Methodology

We used Simplescalar v3.0 [4] to simulate the out-of-order superscalar processor
detailed in Table 1. We used most of the benchmarks from the SPEC CPU 2000
which we compiled for the Alpha 21264 architecture using HP’s compilers and
for the Digital Unix V4.0F using the SPEC suggested default flags for peak
optimization. All benchmarks were run using a reference input data set. It was
not possible to simulate some of the benchmarks due to insufficient memory
resources. To obtain reasonable simulation times, samples were taken for one
billion committed instructions per benchmark. To skip the initialization section
in order to obtain representative results, we collected statistics after skipping
two billion committed instructions for all benchmarks.

4.2 Performance Metric

We report performance results relative to an oracle checkpoint/restore mecha-
nism where it is always possible to recover in one cycle. We refer to this unreal-
izable design as PERF. PERF represents the upper bound on performance for
checkpoint/restore mechanisms if we ignore performance side-effects from mis-
peculated instructions (e.g., prefetching). Accordingly, in most cases we report
performance deterioration compared to PERF. The lower the deterioration the
better the overall performance. Practical designs can perform at best as well as
PERF and in most cases they will perform worse.
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Table 1. Base processor configuration

Branch Predictor Fetch Unit
8K-entry GShare and 8K-entry bi-modal Up to 4 or 8 instr. per cycle

16K Selector 64-entry Fetch Buffer
2 branches per cycle Non-blocking I-Cache

Issue/Decode/Commit Scheduler
Up to 4 instr. per cycle 128-, 256- or 512-entry/half size LSQ

Functional Unit Latencies Main Memory
Default simplescalar values Infinite, 200 cycles

L1D/L1I Cache Geometry UL2 Cache Geometry
64KBytes, 4-way set-associative 1MByte, 8-way set-associative

with 64-byte blocks with 64-byte blocks
L1D/L1I/L2 Cache Latencies Cache Replacement

3/3/16 Cycles LRU
Fetch/Decode/Commit Latencies

4 cycles + cache latency for fetch

4.3 TROB as a ROB Replacement

In this section we study the performance of a design that replaces the ROB
with a TROB. In this design repair points are initiated at every branch so that
it is always possible to recover from a control flow mis-speculation using the
TROB. Other exceptions are handled by re-executing from a preceding repair
point similar to what was proposed in [1]. Whenever a new entry must be written
into the TROB and the TROB is full, decode stalls until a TROB entry becomes
available.

Figure 5 shows the per-benchmark and average performance deterioration rel-
ative to PERF with TROB as a function of the number of TROB entries. The
first bar per benchmark represents the deterioration with ROB-only recovery.
Lower deterioration implies higher performance. On the average, the 512-entry
TROB outperforms the similarly sized ROB by 9.1%. As we decrease the num-
ber of TROB entries, performance deteriorates since decode occasionally stalls.
However, on the average, even a 64-entry TROB performs slightly better than
the 512-entry ROB. With a 128-entry TROB performance is just 2.5% short of
that of a 512-entry TROB and 6.8% better than the ROB.

Per-benchmark behavior varies. For many programs, such as gzip and vpr, a
32-entry TROB performs better than a 512-entry ROB. In this case, the TROB
reduces the number of cycles that are needed for recovery. By comparison, a
32-entry ROB reduces performance by more than 50% on the average. How-
ever, swim, mgrid, applu and lucas suffer when using a TROB with less than
256 entries. In these programs the instruction window is at full capacity most of
the time because they exhibit a low rate of branches and nearly perfect predic-
tion accuracy. Moreover, these benchmarks tend to utilize most of the registers
most of the time. As a result, a smaller TROB artificially restricts the instruc-
tion window. While not shown on the figure, a 384-entry TROB eliminates this
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Fig. 5. Per-benchmark and average performance deterioration relative to PERF with
ROB-only recovery and TROB-only recovery as a function of the number of the TROB
entries

problem for all programs. Thus, TROB always outperforms the ROB even while
requiring fewer resources. Since mis-speculations are virtually non-existent for
these benchmarks we expect that selective repair point allocation coupled with
re-execution recovery as in [1] will be sufficient to avoid performance degrada-
tion for these benchmarks even with a smaller TROB. However, due to time
limitations this study is left for future work.

The results of this section demonstrate that TROB-only recovery can improve
performance significantly over ROB-only recovery. When TROB is given the
same entries as ROB it always performs better. A 384-entry TROB that requires
25% less resources performs better or as well as a 512-entry ROB. With half the
resources, TROB performs significantly better than ROB for most benchmarks
and virtually identically for those that exhibit very low misprediction rates.
With just 25% the resources of ROB, TROB achieves an average performance
deterioration of 7.5% compared to PERF which is significantly lower than the
17% deterioration observed with the 512-entry ROB.

Smaller Window Processors: Figures 6 and 7 report performance for TROB
for processors with 128- and 256-entry instruction windows. The trends are sim-
ilar to those observed for the 512-entry window processor, however, in absolute
terms the differences are smaller. In either case, a TROB that has half the en-
tries than the ROB it replaces is sufficient to improve performance. These results
demonstrate that TROB is a viable ROB replacement for today’s processors also.

4.4 Selective Repair Point Initiation

In this section we complement a ROB with an sTROB which is a TROB that
uses selective repair point initiation. In this case, the sTROB acts as a recovery
accelerator. This design requires more resources than the ROB-only recovery
mechanism, however, these resources are off the critical path. Recovery at a
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ROB-only recovery and TROB-only recovery as a function of the number of the TROB
entries for a 256-entry window processor

branch with a repair point proceeds via the TROB only, otherwise, it is neces-
sary to use both the ROB and the sTROB. In the latter case, recovery proceeds
first at the nearest subsequent repair point via the sTROB. It takes a single cycle
to locate this repair point if it exists provided that we keep a small ordered list
of all repair points at decode. Recovery completes via the ROB for the remaining
instructions if any. Whenever the TROB is full, decode is not stalled but the
current repair point if any is marked as invalid. This repair point and any preced-
ing ones can no longer be used for recovery. Figure 8 shows the per-benchmark
and average performance deterioration for sTROB recovery as a function of the
number of sTROB entries. We use a 1K-entry table of 4-bit resetting counters
to identify low confidence branches [8]. Very similar results were obtained with
the zero-cost, anyweak estimator [11]. Average performance improves even with
a 32-entry sTROB. These results demonstrate that the TROB can be used as
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Fig. 8. Per-benchmark and average performance deterioration relative to PERF with
ROB-only recovery and sTROB recovery as a function of the number of sTROB entries

a recovery accelerator on top of a conventional ROB. Comparing with the re-
sults of the next section, it can be seen that sTROB offers performance that is
comparable to that possible with RAT checkpointing.

4.5 Turbo-ROB with GCs

This section demonstrates that the TROB successfully improves performance
even when used with a state-of-the-art GC-based recovery mechanism [2,1,11]. In
this design, the TROB complements both a ROB and in-RAT GCs. The TROB
accelerates recoveries for those branches that could not get a GC. Recent work
has demonstrated that including additional GCs in the RAT (as it is required
to maintain high performance for processors with 128 or more instructions in
their window) greatly increases RAT latency and hence reduces the clock cycle.
Accordingly, in this case the TROB reduces the need for additional RAT GCs
offering a high performance solution without the impact on clock cycle. The
TROB is off the critical path and it does not impact RAT latency as GCs do.

Figure 9 shows the per-benchmark and average performance deterioration
relative to PERF with (1) GC-based recovery (with one or four GCs), (2)
sTROB, and (3) sTROB with GC-based recovery (sTROB with one or four
GCs). We use a 1K-entry table of 4-bit resetting counters to identify low con-
fidence branches [8]. A low confidence branch is given a GC if one is available,
otherwise, a repair point is initiated for it in the TROB. If the TROB is full,
decode stalls until space becomes available. In this experiments we use a 256-
entry sTROB. On average, the sTROB with only one GC outperforms the GC-
based only mechanism that utilizes four GCs. When four GCs are used with the
sTROB, performance deterioration is 0.99% as opposed to 2.39% when only four
GCs are used. This represents a 59% reduction in recovery cost. These results
demonstrate that the TROB is useful even with in RAT GC checkpointing.
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Fig. 9. Per-benchmark and average performance deterioration relative to PERF with
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5 Conclusions

In this work, we presented “Turbo-ROB”, a recovery accelerator that can com-
plement or replace existing checkpoint/restore mechanisms. The TROB is a novel
low cost and complexity structure that can be used to reduce the negative per-
formance effects of checkpointing and restore in modern architectures. We have
shown that TROB can completely replace a ROB and studied its performance
assuming that repair points are initiated at every branch. We have also shown
that the TROB can complement a conventional ROB acting as an accelerator.
Additional benefits were possible with larger TROBs. Finally, we have shown
that TROB can reduce the pressure for global checkpoints in the RAT.
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Abstract. Current processors frequently run applications containing
loop structures. However, traditional processor designs do not take into
account the semantic information of the executed loops, failing to exploit
an important opportunity. In this paper, we take our first step toward a
loop-conscious processor architecture that has great potential to achieve
high performance and relatively low energy consumption.

In particular, we propose to store simple dynamic loops in a buffer,
namely the loop window. Loop instructions are kept in the loop
window along with all the information needed to build the rename map-
ping. Therefore, the loop window can directly feed the execution back-
end queues with instructions, avoiding the need for using the prediction,
fetch, decode, and rename stages of the normal processor pipeline. Our
results show that the loop window is a worthwhile complexity-effective
alternative for processor design that reduces front-end activity by 14%
for SPECint benchmarks and by 45% for SPECfp benchmarks.

1 Introduction

Recent years have witnessed an enormous growth of the distance between the
memory and the ALUs, that is, the distance between where the instructions are
stored and where computation actually happens. In order to overcome this gap,
current superscalar processors try to exploit as much instruction-level parallelism
(ILP) as possible by increasing the number of instructions executed per cycle.

Increasing the amount of ILP available to standard superscalar processor de-
signs involves increasing both the number of pipeline stages and the complexity
of the logic required to complete instruction execution. The search for mech-
anisms that reduce design complexity without loosing the ability of exploiting
ILP is always an interesting research field for computer architects.

In this paper, we focus on high-level loop structures. It is well known that most
applications execute just 10% of their static instructions during 90% of their run
time [1]. This fact is mainly due to the presence of loop structures. However,
although loops are frequent entities in program execution, standard superscalar
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Fig. 1. Percentage of time executing simple dynamic loops

processors do not have any information about whether or not the individual
instructions executed belong to a loop. Indeed, when an instruction reaches the
execution engine of the processor after being fetched, decoded, and renamed, it
retains little or none algorithmic semantic information. Each instruction only
remembers its program order, kept in a structure like the reorder buffer (ROB),
as well as the basic block it belongs to support speculation.

Our objective is to introduce the semantic information of high-level loop struc-
tures into the processor. A loop-conscious architecture would be able to exploit
ILP in a more complexity-effective way, also enabling the possibility of reschedul-
ing instructions and optimizing code dynamically. However, this is not an easy
design task and must be developed step by step. Our first approach to design
the Loop Processor Architecture (LPA) is to capture and store already renamed
instructions in a buffer that we call the loop window.

In order to simplify the design of our proposal, we take into account just
simple dynamic loops that execute a single control path, that is, the loop body
does not contain any branch instruction whose direction changes during loop
execution. We have found that simple dynamic loops are frequent structures
in our benchmark programs. Figure 1 shows the percentage of simple dynamic
loops in the SPECint2000 and SPECfp2000 programs. On average, they are
responsible for 28% and 60% of the execution time respectively.

The execution of a simple dynamic loop implies the repetitive execution of
the same group of instructions (loop instructions) during each loop iteration.
In a conventional processor design, the same loop branch is predicted as taken
once per iteration. Any existing branch inside the loop body will be predicted
to have the same behavior in all iterations. Furthermore, loop instructions are
fetched, decoded, and renamed once and again up to all loop iterations complete.
Such a repetitive process involves a great waste of energy, since the structures
responsible for these tasks cause a great part of the overall processor energy
consumption. For instance, the first level instruction cache is responsible for
10%–20% [2], the branch predictor is responsible for 10% or more [3], and the
rename logic is responsible for 15% [4].

The main objective of the initial LPA design presented in this paper is to avoid
this energy waste. Since the instructions are stored in the loop window, there
is no need to use the branch predictor, the instruction cache, and the decoding
logic. Furthermore, the loop window contains enough information to build the
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out-of-order
execution

core
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Fig. 2. LPA Architecture

rename mapping of each loop iteration, and thus there is no need to access the
rename mapping table and the dependence detection and resolution circuitry.

According to our results, the loop window is able to greatly reduce the pro-
cessor energy consumption. On average, the activity of the processor front-end is
reduced by 14% for SPECint benchmarks and by 45% for SPECfp benchmarks.
In addition, the loop window is able to fetch instructions at a faster rate than the
normal front-end pipeline because it is not limited by taken branches or instruc-
tion alignment in memory. However, our results show that the performance gain
achievable is limited due to the size of the main back-end structures in current
processor designs. Consequently, we evaluate the potential of our loop window
approach in a large instruction window processor [5] with virtually unbounded
structures, showing that up to 40% performance speedup is achievable.

2 The LPA Architecture

The objective of our first approach to LPA is to replace the functionality of
the prediction, fetch, decode, and rename stages during the execution of simple
loop structures, as shown in Figure 2. To do this, the renamed instructions that
belong to a simple loop structure are stored in a buffer that we call loop window.
Once all the loop information required is stored in the loop window, it is able to
feed the dispatch logic with already decoded and renamed instructions, making
unnecessary all previous pipeline stages.

The loop window has very simple control logic, so the implementation of this
scheme has little impact on the processor hardware cost. When a backward
branch is predicted taken, LPA starts loop detection. All the decoded and re-
named instructions after this point are then stored in the loop window during
the second iteration of the loop. If the same backward branch is found and it
is taken again, then LPA has effectively stored the loop. The detection of data
dependences is done during the third iteration of the loop. When the backward
branch is taken by the third time, LPA contains all the information it needs
about the loop structure.

From this point onwards, LPA is able to fetch the instructions belonging to the
loop from the loop window, and thus the branch predictor and the instruction
cache are not used. Since these instructions are already decoded, there is no need
to use the decoding logic. Moreover, the loop window stores enough information
to build the register rename map, and thus there is no need to access the rename
mapping table and the dependence detection and resolution circuitry. Therefore,



276 A. Garćıa et al.

whenever LPA captures a loop, the instructions belonging to each iteration of the
loop are fetched from the loop window already decoded and renamed, avoiding
the need for using the prediction, fetch, decoding, and renaming logic during
almost all the loop execution.

Our current LPA implementation only supports simple loop structures hav-
ing a single control path inside. The appearance of an alternative path will be
detected when a branch inside the loop body causes a misprediction. Therefore,
the loop window is flushed at branch mispredictions, regardless the loop is still
being stored or it is already being fetched from the loop window. After flushing
the loop window contents, execution starts again using the normal prediction,
fetch, decoding, and renaming logic.

2.1 The Renaming Mechanism

The objective of the renaming logic is to remove data dependences between
instructions by providing multiple storage locations (physical registers) for the
same logical register. The target register of each renamed instruction receives
a physical register that is used both to keep track of data dependences and to
store the value produced by the instruction. The association between logical and
physical registers is kept in a structure called rename table.

Our loop window proposal is orthogonal to any prediction, fetch, and decode
scheme, but it requires to decouple register renaming from physical register al-
location. Instead of assigning a physical register to every renamed instruction,
our architecture assigns a tag as done by virtual register [6]. This association is
kept in a table that we call LVM (Logical-to-Virtual Map table). In this way,
dependence tracking is effectively decoupled from value storage. Virtual tags are
enough to keep track of data dependences, and thus physical register assignment
is delayed until instructions are issued for execution, optimizing the usage of the
available physical registers.

The LVM is a direct mapped table indexed by the logical register number,
that is, it has as many entries as logical registers exist in the processor ISA. Each
entry contains the virtual tag associated to the corresponding logical register.
When an instruction is renamed, the LVM is looked up to obtain the virtual
tags associated to the logical source registers (a maximum of two read accesses
per instruction). In addition, the target register receives a virtual tag from a list
of free tags. The LVM is updated with the new association between the target
register and the virtual tag to allow subsequent instructions getting the correct
mapping (a maximum of one update access per instruction).

Our virtual tags are actually divided into two subtags: the root virtual tag
(rVT) and the iteration-dependent virtual tag (iVT). When a virtual tag is
assigned to a logical register, the rVT field in the corresponding entry of the
LVM receives the appropriate value from the list of free virtual tags, while the
iVT field is initialized to zero. The instructions that do not belong to a captured
loop will keep iVT to zero during all their execution, using just rVT for tracking
dependences.
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@00: add r4,r0,400

@04: add r5,r0,0

@08: add r1,0,4

@12: load r2,0(r4)

@16: load r3,0(r4)

@20: add r2,r3,r2

@24: add r5,r5,r2

@28: sub r4,r4,r1

@32: bneqz r4,@12

Loop Example LVM (after 1st iteration)

Loop detected!!
Loop branch is @32
First instruction is @12
Capturing Loop state starts

virtual v1.0 assigned to logical r4

virtual v2.0 assigned to logical r5

virtual v3.0 assigned to logical r1

virtual v4.0 assigned to logical r2

virtual v5.0 assigned to logical r3

virtual v6.0 assigned to logical r2 (v4.0 out)

virtual v7.0 assigned to logical r5 (v2.0 out)

virtual v8.0 assigned to logical r4 (v1.0 out)

LVM Updates

Log rVT iVT I
r1 v3 0 0
r2 v6 0 0
r3 v5 0 0
r4 v8 0 0
r5 v7 0 0

Fig. 3. Loop detection after the execution of its first iteration

The transparency of this process is an important advantage of LPA: there is no
need for functional changes in the processor design beyond introducing the loop
window and the two-component virtual tag renaming scheme. The out-of-order
superscalar execution core will behave in the same way regardless it receives
instructions from the normal pipeline or from the loop window.

2.2 Loop Detection and Storage

When a backward branch is predicted taken, LPA enters in the Capturing Loop
state. Figure 3 shows an example of a loop structure that is detected by LPA
at the end of its first iteration, that is, when the branch instruction finalizing
the loop body is predicted taken. The backward branch is considered the loop
branch and its target address is considered the first instruction of the loop body.
Therefore, the loop body starts at instruction @12 and finalizes at the loop
branch @32.

During the Capturing Loop state, the instructions belonging to the loop body
are stored in the loop window. Data dependences between these instructions are
resolved using the renaming mechanism. Figure 3 shows a snapshot of the LVM
contents after the first loop iteration. We assume that there are just five logical
registers in order to simplify the graph. Instructions are renamed in program
order. Each instruction receives a virtual tag that is stored in the corresponding
rVT field, while the iVT field is initialized to zero.

In addition, each LVM entry contains a bit (I) that indicates whether a logical
register is inside a loop body and is iteration dependent. The I bit is always
initialized to zero. The value of the I bit is only set to one for those logical
registers that receive a new virtual register during the Capturing Loop state. An I
bit set to one indicates that the associated logical register is iteration-dependent,
that is, it is defined inside the loop body and thus its value is produced by an
instruction from the current or the previous iteration.
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@12: load r2,0(r4)

@16: load r3,0(r4)

@20: add r2,r3,r2

@24: add r5,r5,r2

@28: sub r4,r4,r1

@32: bneqz r4,@12

virtual v9.0 assigned to logical r2 (v6.0 out)

virtual v10.0 assigned to logical r3 (v5.0 out)

virtual v11.0 assigned to logical r2 (v9.0 out)

virtual v12.0 assigned to logical r5 (v7.0 out)

virtual v13.0 assigned to logical r4 (v8.0 out)

Log rVT iVT I
r1 v3 0 0
r2 v11 0 1
r3 v10 0 1
r4 v13 0 1
r5 v12 0 1

Target

Operand #2

Operand #1

Instruction @32@28@24@20@16@12

Loop Window

Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I

r2 v9 0 1 r3 v10 0 1 r2 v11 0 1 r5 v12 0 1 r4 v13 0 1 x x x x

x x x x x x x x r2 v9 0 1 r2 v11 0 1 r1 v3 0 0 x x x x

r4 v8 0 0 r4 v8 0 0 r3 v10 0 1 r5 v7 0 0 r4 v8 0 0 r4 v13 0 1

LVM (after 2nd iteration)Loop Example LVM Updates

Fig. 4. Loop storage during its second iteration

virtual v9.1 assigned to logical r2 (v11.0 out)

virtual v10.1 assigned to logical r3 (v10.0 out)

virtual v11.1 assigned to logical r2 (v9.1 out)

virtual v12.1 assigned to logical r5 (v12.0 out)

virtual v13.1 assigned to logical r4 (v13.0 out)

Log rVT iVT I
r1 v3 0 0
r2 v11 1 1
r3 v10 1 1
r4 v13 1 1
r5 v12 1 1

Loop Window

Target

Operand #2

Operand #1

Instruction @32@28@24@20@16@12

Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I

r2 v9 1 1 r3 v10 1 1 r2 v11 1 1 r5 v12 1 1 r4 v13 1 1 x x x x

x x x x x x x x r2 v9 1 1 r2 v11 1 1 r1 v3 0 0 x x x x

r4 v13 0 1 r4 v13 0 1 r3 v10 1 1 r5 v12 0 1 r4 v13 0 1 r4 v13 1 1

LVM (after 3rd iteration)LVM Updates

@12: load r2,0(r4)

@16: load r3,0(r4)

@20: add r2,r3,r2

@24: add r5,r5,r2

@28: sub r4,r4,r1

@32: bneqz r4,@12

Loop Example

Fig. 5. Removal of dependences during the third loop iteration

Figure 4 shows a snapshot of the LVM at the end of the second iteration of our
loop example, as well as the state of the loop window. All the instructions be-
longing to the loop body are stored in order in this buffer. Since the instructions
are already decoded, the loop window should contain the instruction PC and the
operation code. It should also contain the source registers, the target register,
and any immediate value provided by the original instruction. In addition, each
entry of the loop window should contain the renaming data for the source and
target registers of the corresponding instruction, that is, the values of the rVT,
iVT, and I fields of the corresponding LVM entries at the moment in which the
instruction was renamed.

When the second iteration of the loop finishes and the taken backward branch
is found again, then the full loop body has been stored in the loop window.
However, there is not yet enough information in the loop window to allow LPA
providing renamed instructions. For instance, take a look at the example in
Figure 4. Instruction @32 reads the logical register r4. The loop window states
that the value contained by this register is written by instruction @28 (virtual
tag v13.0). This dependence is correct, since it will remain the same during all
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iterations of the loop. In the next iteration of the loop, instruction @12 will also
read logical register r4. However, the loop window does not contain the correct
virtual tag value (v9.0 instead of v13.0). It happens because the loop window
states that the register value depends on an instruction outside the captured
loop, which was true for that iteration but not for the subsequent ones.

In order to correctly capture dependences between the instructions inside the
loop body, it is necessary to execute a third iteration of the loop. Therefore, when
the second iteration finishes, LPA exits the Capturing Loop state and enters the
Capturing Dependences state. LPA remains in the Capturing Dependences state
during the third iteration of the loop. The source operands of the instructions are
renamed as usual, checking the corresponding entries of the LVM. As happened
during the previous iteration, the contents of the LVM entries are also stored in
the loop window. However, when the target register of an instruction requires
a new virtual tag, the rVT component of the tag does not change. New virtual
tags are generated increasing the value of the iVT component by one.

Figure 5 shows a snapshot of the LVM at the end of the third iteration of
our loop example, as well as the state of the loop window. Now, the dependence
between instruction @28 and instruction @12 is correctly stored. Instruction @28
in the second iteration generates a value that is associated to virtual tag @13.0
(Figure 4). In the current iteration, instruction @12 reads the value associated
to virtual tag @13.0, while the new instance of instruction @28 generates a
new value that is associated to virtual tag @13.1 and later read by instruction
@32. Extending this mapping for the next iteration is straightforward, since it
is only necessary to increment the iVT field by one. During the fourth iteration,
instruction @12 will read the value associated to virtual tag v13.1 and instruction
@28 will generate a value that will be associated to virtual tag v13.2 and later
read by instruction @32.

2.3 Fetching from the Loop Window

After the third iteration finishes, the loop window contains enough information to
feed the dispatch logic with instructions that are already decoded and renamed.
Figure 6 shows how to generalize the information stored during previous loop
iterations. Let i be the current loop iteration. The rVT values assigned to all
registers remain equal during the whole loop execution. The instructions that
store a value in a register during current iteration get the value i for the iVT
component of the virtual tag associated to its target. Those instructions that
read a value defined in the previous iteration will get the value i − 1 for the iVT
component, while those instructions that read a value defined in the current
iteration will get the value i for the iVT component. Instructions that read a
value defined outside the loop body will get the value 0 for the iVT component.

When an instruction is fetched from the loop window, the rVT value stored
in the loop window is maintained for both the source operands and the target
register. For each of these registers that has the I bit set to one, the iVT value
stored in the loop window is increased by one to generate the new virtual tag
that will be used in the next loop iteration. The iVT value is not increased if the
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@12: load  r2, 0(r4)

@16: load  r3, 0(r4)

@20: add r2, r3,   r2

@24: add r5, r5,   r2

@28: sub r4, r4,   r1

@32: bneqz r4, @12

Loop Example

@12: load  v9.[i],  0(v13.[i-1])

@16: load  v10.[i], 0(v13.[i-1])

@20: add v11.[i], v10.[i],     v9.[i]

@24: add v12.[i], v12.[i-1],   v11.[i]

@28: sub v13.[i], v13.[i-1],   v3.0

@32: bneqz v13.[i], @12

Loop Mapping

Loop Window

Target

Operand #2

Operand #1

Instruction @32@28@24@20@16@12

Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I Log rVP iVP I

r2 v9 1 1 r3 v10 1 1 r2 v11 1 1 r5 v12 1 1 r4 v13 1 1 x x x x

x x x x x x x x r2 v9 1 1 r2 v11 1 1 r1 v3 0 0 x x x x

r4 v13 0 1 r4 v13 0 1 r3 v10 1 1 r5 v12 0 1 r4 v13 0 1 r4 v13 1 1

Fig. 6. Generalization of the rename map obtained by LPA for our loop example

I bit value is zero, since it indicates that the value is not iteration-dependent,
that is, it has been defined by an instruction outside the loop body and remains
the same during all the loop execution.

For example, Figure 6 shows the state of the loop window after the third loop
iteration. All the values generated during this iteration are associated to virtual
tags whose iVT component value is one. During the fourth iteration, instruc-
tions @12 and @16 increment the iVT value of their source register in order to
generate the correct virtual tag (v13.1) that allows accessing the correct value
generated by instruction @28 in the previous iteration. In addition, instructions
@12 and @16 store this tag in the loop window. At the end of the fourth iter-
ation, instruction @28 generates a new value that is associated to the virtual
tag obtained from increasing the iVT value stored for its target register. In the
fifth iteration, instructions @12 and @16 increase again the iVT value to access
the correct target of instruction @28 (v13.2) and so on. Meanwhile, instruction
@28 always read the same value for its source register r1, since its I bit value
is zero, and thus it does not vary during the loop execution (v3.0). From this
point onwards, there is no change in the normal behavior of the processor shown
in Figure 2. Physical registers are assigned at the dispatch stage, regardless the
instructions come from the loop window or the original pipeline, and then the in-
structions are submitted for execution to the out-of-order superscalar back-end.
In other words, LPA is orthogonal to the dispatch logic and the out-of-order
superscalar execution core.

3 Experimental Methodology

The results in this paper have been obtained using trace driven simulation of
a superscalar processor. Our simulator uses a static basic block dictionary to
allow simulating the effect of wrong path execution. This model includes the
simulation of wrong speculative predictor history updates, as well as the possible
interference and prefetching effects on the instruction cache.



LPA: A First Approach to the Loop Processor Architecture 281

Table 1. Configuration of the simulated processor

fetch, rename, and commit width 6 instructions
int and fp issue width 6 instructions
load/store issue width 6 instructions
int, fp, and load/store issue queues 64 entries
reorder buffer 256 entries
int and fp point registers 160 registers
conditional branch predictor 64K-entry gshare
branch target buffer 1024-entry 4-way
RAS 32-entry
L1 instruction cache 64 KB, 2-way associative, 64 byte block
L1 data cache 64 KB, 2-way associative, 64 byte block
L2 unified cache 1 MB, 4-way associative, 128 byte block
main memory latency 100 cycles

Our simulator models a 10-stage processor pipeline. In order to provide results
representative of current superscalar processor designs, we have configured the
simulator as a 6-instruction wide processor. Table 1 shows the main values of our
simulation setup. The processor pipeline is modeled as described in the previous
section. We have evaluated a wide range of loop-window setups and chosen a
128-instruction loop window because it is able to capture most simple dynamic
loops. Larger loop windows would only provide marginal benefits that do not
compensate the increased implementation cost.

We feed our simulator with traces of 300 million instructions collected from
the SPEC2000 integer and floating point benchmarks using the reference input
set. Benchmarks were compiled on a DEC Alpha AXP 21264 [7] processor with
Digital UNIX V4.0 using the standard DEC C V5.9-011, Compaq C++ V6.2-
024, and Compaq Fortran V5.3-915 compilers with -O2 optimization level. To
find the most representative execution segment we have analyzed the distribution
of basic blocks as described in [8].

4 LPA Evaluation

In this section, we evaluate our loop window approach. We show that the loop
window is able to provide great reductions in the processor front-end activity.
We also show that the performance gains achievable are limited by the size of
the main back-end structures. However, if an unbounded back-end is available,
the loop window can provide important performance speedups.

4.1 Front-End Activity

The loop window replaces the functionality of the prediction, fetch, decode, and
rename pipeline stages, allowing to reduce their activity. Figure 7 shows the ac-
tivity reduction achieved for both SPECint and SPECfp 2000 benchmarks. On
average, the loop window reduces the front-end activity by 14% for SPECint
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Fig. 7. Reduction in the activity of the prediction, fetch, decode, and rename stages

benchmarks. This reduction ranges from less than 2% in 186.crafty and 252.eon
up to more than 40% in 176.gcc. The reduction is higher for the SPECfp bench-
marks, since they have more simple dynamic loops. On average, SPECfp achieve
45% activity reduction, ranging from 6% in 177.mesa to more than 95% in
171.swim and 172.mgrid.

This activity reduction involves saving processor energy consumption. Re-
ducing the total number of branch predictions involves reducing the number of
accesses to the branch prediction mechanism. Reducing the number of instruc-
tions processed by the front-end involves reducing the number of accesses to the
instruction cache, the decoding logic, the LVM, and the dependence check and
resolution circuitry.

Although we are currently working on modeling the actual energy consump-
tion of the processor front-end and the loop window, we are not ready yet to
provide insight about this topic. Nevertheless, we are confident that the high
reduction achieved in the processor front-end activity will more than compen-
sate the additional consumption of the loop window itself, showing that the
loop window is a valuable complexity-effective alternative for the design of high-
performance superscalar processors.

4.2 Performance Evaluation

The loop window is able to improve processor performance because, unlike the
normal front-end pipeline, it is not limited by taken branches and by the align-
ment of instructions in cache lines. Consequently, the loop window is able to pro-
vide instructions to the dispatch logic at a faster rate. This faster speed makes
it possible to reduce the width of the processor front-end, and thus reduce its
design complexity.

In this section, we evaluate the impact on performance caused by reducing
the width of the processor front-end. Figure 8 shows the IPC speedup achieved
by a 6-instruction wide superscalar processor (right bar) over a similar proces-
sor whose front-end is limited to just 4-instructions. As expected, increasing
the front-end width from 4 to 6 instructions improves overall performance. On
average, SPECint benchmarks achieve 3.3% speedup and SPECfp benchmarks
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Fig. 8. Performance speedup over a 4-wide front-end processor (back-end is always
6-wide)

achieve 4.5% speedup. The improvement is larger for SPECfp benchmarks be-
cause branch instructions are better predicted, and thus it is possible to extract
more ILP.

The left bar shows the speedup achieved when the front-end is still limited to
4 instructions, but a loop window able to fetch up to 6 instructions per cycle is
included. This loop window allows reducing the front-end activity. In addition,
a 4-instruction wide front-end is less complex than a 6-wide one. However, it
becomes clear from these results that adding a loop window is not enough for
the 4-wide front-end to achieve the performance of the 6-wide front-end. It only
achieves comparable performance in a few benchmarks like 176.gcc, 200.sixtrack,
and 301.apsi. On average, SPECint benchmarks achieve 1% IPC speedup and
SPECfp achieve 2.3% speedup.

The loop window is not able to reach the performance of a wider processor
front-end because the most important back-end structures are completely full
most of the time, that is, back-end saturation is limiting the potential benefit of
our proposal. Figure 9 shows performance speedup for the same setups previously
shown in Figure 8, but using an unbounded back-end, that is, the ROB, the issue
queues, and the register file are scaled to infinite.

The loop window achieves higher performance speedups for SPECint and
especially SPECfp benchmarks. Furthermore, the loop window using a 4-wide
front-end achieves better performance than the 6-wide front-end in several bench-
marks: 176.gcc (SPECint), 172.mgrid, 178 galgel, and 179.art. Those bench-
marks have a high amount of simple dynamic loops, enabling the loop window
to fetch instructions at a faster rate than normal front-end most of time.

5 Related Work

To exploit instruction level parallelism, it is essential to have a large window
of candidate instructions available to issue. Reusing loop instructions is a well-
known technique in this field, since the temporal locality present in loops provides
a good opportunity for loop caching. Loop buffers were developed in the sixties
for the CDC 6600/6700 series [9] to minimize the time wasted due to conditional
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Fig. 9. Performance speedup over a 4-wide front-end processor using an unbounded
6-wide back-end

branches, which could severely limit performance in programs composed of short
loops. The IBM/360 model 91 introduced the loop mode execution as a way of
reducing the effective fetch bandwidth requirements [10,11]. When a loop is
detected in an 8-word prefetch buffer, the loop mode activates. Instruction fetch
from memory is stalled and all branch instructions are predicted to be taken.
On average, the loop mode was active 30% of the execution time.

Nowadays, hardware-based loop caching has been mainly used in embedded
systems to reduce the energy consumption of the processor fetch engine. Lee
et al. [12] describe a buffering scheme for simple dynamic loops with a single
execution path. It is based on detecting backward branches (loop branches) and
capturing the loop instruction in a direct-mapped array (loop buffer). In this way,
the instruction fetch energy consumption is reduced. In addition, a loop buffer
dynamic controller (LDC) avoids penalties due to loop cache misses. Although
this LDC only captures simple dynamic loops, it was recently improved [13] to
detect and capture nested loops, loops with complex internal control-flow, and
portions of loops that are too large to fit completely in a loop cache. This loop
controller is a finite machine that provides more sophisticated utilization of the
loop cache.

Unlike the techniques mentioned above, our mechanism is not only focused
on reducing the energy consumption of the fetch engine. The main contribution
of LPA is our novel rename mapping building algorithm, which makes it pos-
sible for our proposal to reduce the consumption of the rename logic, which is
one of the hot spots in processor designs. However, there is still room for im-
provement. The implementation presented in this paper only captures loops with
a single execution path. However, in general-purpose applications, 50% of the
loops has variable-dependent trip counts and/or contains conditional branches
in their bodies. Therefore, future research effort should be devoted to enhance
our renaming model for capturing more complex structures in the loop window.

Although our mechanism is based on capturing simple loops that are mostly
predictable by traditional branch predictors, improving loop branch prediction
would be beneficial for some benchmarks with loop branches that are not so
predictable. In addition, advanced loop prediction would be very useful to en-
able LPA to capture more complex loop patterns. Many mechanisms have been
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developed to predict the behavior of loops. Sherwood et al. [14] use a Loop Termi-
nation Buffer (LTB) to predict patterns of loop branches (backward branches).
The LTB stores the number of times that a loop branch is taken and a loop it-
eration counter is used to store the current iteration of the loop. Alba and Kaeli
[15] use a mechanism to predict several loop characteristics: internal control flow,
number of loop visits, number of iterations per loop visit, dynamic loop body
size, and patterns leading up to the loop visit. Any of these techniques can be
used in conjunction with our loop window to improve its efficiency.

Regarding our rename map building algorithm, there are other architectural
proposals that try to remove instruction dependences without using a traditional
renaming logic. Dynamic Vectorization [16,17] detects and captures loop struc-
tures like LPA does. This architecture saves fetch and decode power by fetching
already decoded instructions from the loop storage. Rename information is also
reused but it relies on a trace-processor implementation to achieve this goal.
Those registers that are local to loops are renamed to special-purpose register
queues, avoiding the need for renaming them in the subsequent iterations. How-
ever, only local registers take advantage of this mechanism. The live-on-entry
and live-on-exit registers are still renamed once per iteration, since they are
hold on a global register file using global mapping tables.

The Execution Cache Microarchitecture [18] is a more recent proposal that
has some resemblance with Dynamic Vectorization. This architecture stores and
reuses dynamic traces, but they are later executed using a traditional superscalar
processor core instead of a trace-processor. Rename information is also reused
by this architecture. However, like Dynamic Vectorization, it does not use a
traditional register file but a rotating register scheme that assigns each renamed
register to a register queue.

The main advantage of LPA is that it does not require such a specialized
architecture. LPA can be applied to any traditional register file design. Therefore,
the design and implementation cost of our proposal would be lower. In addition,
all the optimization techniques developed for previous architectures like Dynamic
Vectorization can be applied orthogonally. This will be an important research
line to improve the performance-power features of LPA in a near future.

6 Conclusions

The Loop Processor Architecture (LPA) is focused on capturing the semantic
information of high-level loop structures and using it for optimizing program
execution. Our initial LPA design uses a buffer, namely the loop window, to
dynamically detect and store the instructions belonging to simple dynamic loops
with a single execution path. The loop window stores enough information to build
the rename mapping, and thus it can feed directly the instruction queues of the
processor, avoiding the need for using the prediction, fetch, decode, and rename
stages of the normal processor front-end.

The LPA implementation presented in this paper reduces the front-end ac-
tivity, on average, by 14% for the SPECint benchmarks and by 45% for the
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SPECfp benchmarks. However, the performance gain achievable by the loop
window is seriously limited by the size of the back-end structures in current pro-
cessor designs. If an unbounded back-end with unlimited structures is available,
the loop window achieves better performance than a traditional front-end de-
sign, even if this front-end is wider. The speedup achieved by some benchmarks
like 171.swim, 172.mgrid, and 178.galgel is over 40%, which suggests that the
loop window could be a worthwhile contribution to the design of future large
instruction window processors [5].

These results show that even the simple LPA approach presented in this paper
can improve performance and, especially, reduce energy consumption. Further-
more, this is our first step towards a comprehensive LPA design that extracts all
the possibilities of introducing the semantic information of loop structures into
the processor. We plan to analyze loop prediction mechanisms and implement
them in conjunction with the loop window. In addition, if the loop detection
is guided by the branch predictor, the loop window can be managed in a more
efficient way, reducing the number of insertions required and optimizing energy
consumption.

The coverage of our proposal is another interesting topic for research. We
only capture now simple dynamic loops with a single execution path, but we
will extend our renaming scheme to enable capturing more complex loops that
include hammock structures, that is, several execution paths. Increasing coverage
will also benefit the possibility of applying dynamic optimization techniques to
the instructions stored in the loop window, and especially those optimizations
focused on loops, improving the processor performance. In general, we consider
LPA is a worthwhile contribution for the computer architecture community, since
our proposal has a great potential to improve processor performance and reduce
energy consumption.
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Abstract. Edge profiling is a very common means for providing feedback on 
program behavior that can be used statically by an optimizer to produce highly 
optimized binaries. However collecting full edge profile carries a significant 
runtime overhead. This overhead creates addition problems for real-time 
applications, as it may prevent the system from meeting runtime deadlines and 
thus alter its behavior. In this paper we show how a low overhead sampling 
technique can be used to collect inaccurate profile which is later used to 
approximate the full edge profile using a novel technique based on the 
Minimum Cost Circulation Problem. The outcome is a machine independent 
profile gathering scheme that creates a slowdown of only 2%-3% during the 
training set, and produces an optimized binary which is only 0.6% less than a 
fully optimized one.  

Keywords: Control Flow, Sampling, Profiling, Real-time, Circulations, Flow 
network. 

1   Introduction 

Control flow profiling is the determination of the number of time each edge/vertex is 
traversed in the flow graph of a program, when running a 'typical' input. Such profile 
can be obtained by adding instrumentation code or by using external sampling, and are 
extremely useful as they provide empirical information about the application such as 
determining performance critical areas in the code and deducing probabilities of 
conditional branches to be taken. Indeed, such methods have been used since the 70s. 
Profile driven optimizations are supported today in most modern compilers and post-
link optimizers [6 – 13]. Profile-directed compilation uses information gathered in 
several ways: Run-time profiling which is mainly used today by dynamic optimizers 
such as the Java Just In Time (JIT) compiler, in which profile is collected at run-time. 
The problem with this approach is that it requires additional system resources at 
runtime, which may be undesirable in high performance low resource embedded 
applications, especially if they carry real time constraints. Another method for profile-
driven optimization uses pre-selected representative workload which trains the program 
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on typical workloads and then uses this data to produce a highly optimized version. 
Finally, static profiling can be used by compilers as a method for predicting program’s 
control flow, but such methods are not as effective as the previously mentioned  
options [4].  

Collecting full edge profile requires creating instrumented code with edge counters 
that will increment upon execution and persist this data, typically by mapping it to some 
file. Thomas Ball and James R. Larus suggest algorithms for optimally inserting 
monitoring code to profile and trace programs and they report a slowdown of between 
9% to 105% when comparing the original binary to the instrumented one [1]. Due to 
this slowdown, along with the extra build step which is required for instrumentation 
which also increases the complexity of the compilation/build process, many consider 
alternative approaches such as low overhead profiling [2]. In real time embedded 
applications another problem arises, as intrusive instrumentation code may alter real-
time application behavior as a result of deadlines in the real time program that may be 
missed [21]. Therefore collecting profile for real-time applications calls for less 
intrusive profile collection techniques, such as low rate sampling, selective 
instrumentation or running the instrumented binary in a machine which is significantly 
stronger than target machine. However, using sampling techniques or selective 
instrumentation will produce both inaccurate and lacking profile information which may 
result in sub-optimal performance of an application optimized according to this profile. 
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In this work, we present a new edge profile estimation algorithm based on given 

partial and possibly inaccurate vertex counts with costs attached to the edges and 
vertices. Our edge profile estimation is translated to the Minimum Cost Circulation 
Problem [5], which infuses a legal circulation in a flow network while keeping the 
weighted flow-costs on the edges at a minimum. The assumption is that by creating a 
legal network flow, while minimizing some criteria for the amount of global change 
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done to the given flow, it will provide a better estimate for the actual flow. We 
provide empirical proof for this assumption in the experimental results which appear 
in section 6. Let us consider the problem of filling in missing profile data. As an 
example, consider the control flow graph shown in figure 1 which includes partial 
vertex profiling collected by sampling the Instruction Complete hardware event (the 
numbers represent the execution counts for each vertex). From the given example, it 
is clear that the complete vertex counters which a zero value should be fixed as shown 
in figure 2. 

However, determining the edge profile from the vertex counters alone is not 
always possible. In this example, the control flow graph shown in figure 2 has two 
possible edge profile estimates as shown in figures 2a and 2b. 

Both optional estimates adhere to the flow conservation constraints but the 
differences between the edge weights may be very significant. The freedom to choose 
weight for edges e1, e6, e7, e8 may yield very different results.  As one would expect, 
Youfeng Wu and James R. Larus [4], show that loop back edges have a very high 
probability to be taken. Keeping this in mind, we can determine that optional 
estimation 1 (from figure 2a), that infuses much more flow on edge e7 has a much 
higher chance of achieving a better approximation of the actual flow. Any attempt to 
infuse flow on the graph’s edges will have to be made aware of the probabilities on 
the edges to be taken. However, examining the probabilities locally is not optimal 
since if one decides to infuse a count of 50 on e1 and on e8 (as the probabilities on 
them may be equal) then that will determine a count of 50 on e6 and on e7 as well. This 
is undesirable, since we would want to infuse most of the flow through e7 which is a 
back edge with high probability to be taken. Therefore, in order for a complementing 
algorithm to be successful it should have some global view of the edge probabilities. 
Indeed, in this example, the high probability of 90% for e7, shown in figure 1, will 
guide our proposed algorithm’s global view to prefer the 2nd estimated profile edge. 
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We know how to find optimal solution with respect to several cost functions. 
However, in order to test the applicability of our method for real life applications we, 
heuristically, tried several different cost functions that were assigned to a profile 
gathered by low-rate sampling profiling. This will be thoroughly explained in section 
3, where we formulate the problem. 

The paper is arranged in the following manner: section 2 describes additional 
related work on profile gathering techniques. Section 3 formulates the problem of 
complementing the missing profiling information to the Minimum Circulation 
problem. Section 4 and 5 describes the proposed algorithm for fixing the missing 
graph. The complete proof of the algorithm correctness has been taken out due to size 
limitations. Section 6 provides experimental results which were obtained by 
implementing the algorithm into FDPR post-link optimizer and running it on AIX 
POWER 5 SPEC INT 2000 suite. Finally, future directions are discussed in section 7 
followed by a summary section. 

2   Related Work for Profiling Techniques 

Many papers have been written on techniques for collecting profile information. The 
issue is of major importance since the collected profile is very useful at guiding 
optimizing both static and dynamic compilers and post-link optimizers while the 
collection of the profile carries a significant overhead. The goal is therefore to collect 
accurate profile while keeping the runtime overhead of the profile collection to 
minimum. 

J. Anderson et al present a method for collecting profile samples at a high rate and 
with low overhead [2]. To describe performance at the instruction level, they address 
two issues: how long each instruction stalls and the reasons for each stall. To 
determine stall latencies, an average CPI is computed for each instruction, using 
estimated execution frequencies. Accurate frequency estimates are recovered from 
profile data by a set of heuristics that use a detailed model of the processor pipeline 
and the constraints imposed by program control flow graphs to correlate sample 
counts for different instructions. The processor pipeline model explains static stalls; 
dynamic stalls are explained using a “guilty until proven innocent” approach that 
reports each possible cause not eliminated through careful analysis. In section 6.1.4 
they refer to their Local Propagation algorithm and add a note that they are 
experimenting with a global constraint solver. 

Additional papers suggest ways to collect profile information while reducing the 
overhead of the profile collection and attempting to keep the profile accuracy high at the 
same time. Matthew Arnold and Barbara G. Ryder [15] propose a framework that 
performs code duplication and uses compiler inserted counter-based sampling to switch 
between instrumented and non-instrumented code in a controlled fine-grained manner. 
Thomas Ball and James R. Larus suggest algorithms for optimally inserting monitoring 
code to profile and trace programs [1]. The algorithms optimize the placement of 
counting/tracing code with respect to the expected or measured frequency of each block 
or edge in a program's control-flow graph. Their idea is to find the lowest cost set of 
instrumentation points, when given a flow network and costs. 
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The technique proposed in our paper attempts to suggest a general, and global 
algorithm that can address filling in missing or inaccurate profile information, such as 
that which occurs when performing sampling but not limited to. For filling in, and 
fixing, the profile for the sampling case, we use an instruction complete event counter 
instead of sampling the program counter and then estimating the basic block 
frequencies using machine dependant heuristics. 

3   Formulating the Problem 

Our method is based on the assumption that by creating a legal network flow, while 
minimizing some criteria for the amount of weighted change done to the given flow, 
we can provide a better estimate to the actual flow that occurred. So the problem can 
be generalized and viewed as follows: 

Given a directed graph ( )EVG ,=  with (integer) measured flow, )(vw  , )(ew  

for each vertex v  and each edge e , the measured flows are assumed to be derived 
from inaccurate flow measurements in a given flow network. The inaccuracies may 
manifest themselves as discrepancies in the given flow network which break the flow 

conservation rule stating that for every ( )TSVv ∪∈ \  the following should hold: 

)()()(
)()(

vwewew
voute

out
vine

in

outin

== ∑∑
∈∈

 (1) 

S,T here are arbitrary given (possibly empty) subsets of V (of sources and sinks 
respectively) for which flow conservation is not demanded. In the application, these 
sets correspond to entry/ exit points in the control graph.  These can be the 
prologue/epilogue basic blocks if our control flow graph represents a single 
procedure, or entry points and exit points of a program if our control flow graph refers 
to the entire program. We refer to (1) as the generalized flow conservation rule. 

The idea is that by fixing the flow to adhere to the generalized flow conservation rule 
while limiting the amount of weighted change to a minimum we will achieve a near 
approximation to the actual flow. Thus, a feasible solution to the problem is a fixup 
vector, ( )(oΔ : EVo ∪∈  ), namely a vector of changes, one per each edge and 

vertex, for which the corrected flow )()()(* oowow Δ+=  yields a legal flow that 

satisfies the generalized flow conservation (1).  We rank different feasible solutions by a 
cost function associated with each fixup vector and that is formally part of the input (in 
application this would be a heuristically chosen function as will be explained in the next 
section).  Indeed our experimental results show that such optimal (or high rank) feasible 
solutions are a good approximation to the profiling problem.  

Our algorithms can find optimal solution to the above formal problem for a wide 
variety of costs. Linear cost functions are theoretically easy to deal with, while not 
very practical, as it would imply that for each edge / vertex, either increasing the flow 
by an infinite amount, or decreasing it by an infinite amount is beneficial. A class of 
reasonable cost functions would be of the form:    

( ) ( ) ( )∑∑
∪∈∪∈

Δ⋅=Δ=Δ
EVoEVo

oocpott )(cos)(cos  (2) 
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Where )(ocp  is a non negative vector of coefficients. Such functions are monotone 

with the absolute amount of change for each edge/ vertex and are referred as weighted 
l1 costs.  Such functions give the ability, by chosing the right weights, to prefer 
changes to some edges than to others (e.g due to some a-priory knowledge of the 
reliability of the measurements at different sites). We can, however, do a bit more. 
Weighted l1 costs do not distinguish between increasing and decreasing the flow at a 
site. It might be important for some edges to charge more for decreasing the flow than 
for increasing it (again, due to some prior knowledge on the flow).  Thus we define: 

( ) ( ) ( )∑∑
∪∈∪∈

Δ⋅Δ=Δ=Δ
EVoEVo

oocpott ,)(cos)(cos  (3) 

Where the coefficient cp(o,Δ) = k+(o) if Δ>0 and cp(o,Δ) = k-(o) if Δ<0. These 
coefficients are called the confidence constants. Clearly such cost function generalizes 
weighted l1 costs and will be referred to as generalized l1.  

In the following we solve the problem optimally for generalized l1. Indeed we 
show in the experimental results that such functions can be used to obtain good 
practical results. We elaborate on other possible cost functions in the future directions 
section.  

4   Polynomial Algorithm for Finding the Optimal Fixup Vector 

To find the optimal generalized  l1 solution we use a reduction to minimum-cost 
circulation algorithm [5] which we apply on a transformed graph we call the fixup 
graph (see section 4.1). A circulation is a generalization of flow in a network in the 
sense that there is no source and sink, and thus flow conservation must be maintained 
for each and every vertex in the graph. A minimum-cost circulation is a circulation 
that satisfies the flow conservation for every vertex in the graph while keeping the 
weighted cost of the flow at a minimum (here the cost is a simple linear function, that 

is, for a circulation c=(c(e)) for every edge e, its cost is ( )∑
∈

⋅=
Ee

ecekct )()(cos , 

where k(e) is a non-negative weight for each edge e. The reduction is composed of 
two steps. In the first step, denoted as vertex transformation, we stay in the optimum 
flow fixup problem, but get rid of vertex flows and their corresponding costs.  This is 
done by applying a standard vertex transformation which splits each vertex v into two 
vertices v' and v'', while distributing the incoming and outgoing edges respectively to 

v' and v''. The two resulting vertices, v' and v'', are then connected by an edge ve , 
outgoing from v' and incoming to v''. We define the weight and cost functions for this 

new edge to be )()( vwew v ≡  and )()( vkek v ±± ≡  so that )()( vcpecp v = . 

Clearly this first step does not change the cost, thus we will assume in what follows 
that we only have edge folws and costs. In addition, we may assume that the set of 
sources is a singleton, that is S={s}, as other wise we just add a new source s' and 
connect it to every original source is S with an edge of cost 0. Thus original sources 
will conserve flow automatically with no additional costs while moving the surplus 
flow to the single source s'. Similarly, we may assume that there is a single sink t' by 
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an analogue argument. Finally, we may insert a new directed edge of cost 0 from the 
single sink t to the single source s. This will turn any feasible flow to a circulation of 
the same cost. Thus we may assume that in fact S=T=∅. 

4.1   Constructing the Fixup Graph 

Given a graph ( )EVG ,=  and its measured flow )(vw and )(ew  for the vertices 

and edges respectively, as input for the optimal flow fixup,  we wish to create a new 

graph ( )','' EVG =  with given minimal and maximal capacity constraints (b, c) for 

each edge, herein the fixup graph. This transformation is formally defined below. 
 

Input: 

• ),( ttt EVG =  denotes the original graph after applying the vertex 

transformation.  

• )(ew  denotes the initial flow estimation for every edge tEe∈  (this is 

thoroughly explained in section 5 under "setting the constants"). 

• )(ek ±  denotes the negative/positive confidence constants on any tEe∈  (see 

section 3). 

• Let ( ) ( )∑∑
∈∈

−≡
)()(

)()()(
vine

k
voute

l

kl

ewewvD  for every 
tVv ∈ . 

Output: 

• )','(' EVG =  the fixup graph 

• )'(),'( eceb minimum/maximum capacities for flow on every edge  '' Ee ∈  

• )'(ek  positive confidence constant for any '' Ee ∈  (note that infusing negative 

flow is not possible so here we do not need a negative confidence constants) 

The output graph for the circulation problem is defined as follows: 
 

1. s' new Vertex, t' new Vertex 

2. ∞←← )','(,0)','( stcstb  

3. 0)','( ←stcp  

4. φφ ←← LEr ,  

5. foreach tEe∈  do:  

a. 0)( ←eb , ∞←)(ec , )()(' ekek +←  

6. foreach tEuve ∈= ,  such that tEvu ∉,  do: 

a. vuEE rr ,∪←  

b. ( ) ( ) ( ) ( ) )(,,0,),,(),(' ewvucvubuvkvuk ←←← −  
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7. foreach tVv ∈ do: 

a. if D(v) > 0 then  

i. { } ( ) ( ) )(',),(',,', vDtvcvDtvbtvLL ←←∪←
 

b. if D(v) < 0 then  

i. { } ( ) ( ) )(,'),(,',,' vDvscvDvsbvsLL −←−←∪←  

8. { }','' tsVV ∪←  

9. ','' stLEEE r ∪∪∪←  
 

Note that in the final phase of the construction we add an edge from t to s to create 
a circulation problem rather than a flow problem. 

 

Any solution to the circulation problem is a flow function for each edge in E'. For 

each edge in the original graph, Euve ∈= ,  we then calculate the fixup vector, 

Δ(e) as follows: 
⎭
⎬
⎫

⎩
⎨
⎧

<−
≥

=Δ
0),(),(

0),(),(
)(

vufvuf

uvfuvf
e . By mapping back the edges 

which were derived from the vertices when we applied the vertex transformation (the 
vertex splitting at the beginning of this section) we can determine the values of Δ(v) 
for each v in V as well. 

4.2   Complexity of the Algorithm 

Goldberg & Tarjan [5], present an algorithm for the circulation problem. 
Theoretically the worst running time of this algorithm is: 

( ) ( )( )( )VECVEVO log,logmin22 ⋅⋅⋅⋅  (4) 

Note that C is the maximum absolute value of an arc cost. Despite this frightening 
worst case complexity we found that in practice the algorithm performed very well on 
the benchmarks from SPECint which we used for our analysis, and the algorithm's 
runtime was not an issue worth addressing when we applied it in procedure 
granularity (thus applying it on control flow graphs derived from procedures). Even as 
some of the control flow graphs which correspond to procedures from SPECint 
benchmarks contained thousands of vertices and edges. 

5   Estimating Vertex and Edge Frequencies 

After gathering many experimental results and studying several cost coefficient 
functions we choose to define the cost coefficient function for the vertices and edges 
as follows:  

( )( )
( )2)(ln

'
)(

+
Δ=
ow

ok
ocp , ( )

⎭
⎬
⎫

⎩
⎨
⎧

<Δ
≥Δ

=Δ −

+

o

o

ko

ko
ok

0)(

0)(
)('  (5) 
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Let us examine the terms in )(ocp : 

• The confidence constants −+
oo kk / , represent the confidence we have in the 

measurement of a vertex or edge. +
ok / −

ok  effect the cost of increasing/decreasing 

the flow on EVo ∪∈  (thus setting positive/negative values to )(oΔ ). Note 

that the higher the confidence we have in the measurement the higher the cost to 
change its measured value will be. 

• w(o) represents an initial flow estimation on EVo ∪∈ , this is explained 
thoroughly in section 5, but for now it is sufficient to think of it as the inaccurate 
flow as measured on EVo ∪∈ . 

• The ln function is used to normalize the weight of the edge/vertex which is in the 
denominator of the cost function, thus creating a denser distribution of costs. 

 

For any application of the technique for filling in the missing/inaccurate gathered 
profile information we limit ourselves to filling in intra-procedural (local) missing 
frequencies. 

 

The algorithm for applying the intra-procedural fixes is as follows: 
 

1. foreach f in the list of functions do 
a. build control flow graph g for f 
b. foreach EVo ∪∈  in G assign values to the confidence constants 

)(ok ±  and the weight function )(ow  (see Setting the constants ahead) 

c. Build a fixup graph G’ (see section 4)  
d. apply the minimum cost circulation algorithm to G’ to find the minimum 

flow function f 
e. Retrieve the fixup vector Δ  from f as explained in section 4. 

 

Setting the constants: )(),( owok ±  

Setting )(ow : Youfeng Wu and James R. Larus suggest techniques to estimate edge 

probabilities [4]. We determine the probability for each edge ( )vup ,  by using static 

profile techniques as suggested in their paper. The weight for each edge is then set as 

follows: ( ) ( ) ( )uvpvwuvw ,, ⋅=  

Setting )(ok ± : we set the value for the confidence constants as follows: 

bako ⋅= ±± ; )(__,50,1 cfgweightvertexavgbaa === −+  (6) 

Note that the b parameter is just for normalization so it's not very important. Setting 
+a and −a   as shown above, worked well because it made the cost of decreasing 

flow on a vertex/edge significantly larger than that of increasing the flow on it. If we 

would have given +a and −a  similar values we would end up with a fixup vector that 
cancels most of the measured flow, as the trivial solution that cancels all the flow on 
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the edges may is very appealing. On the other hand setting them farther apart caused 
edges and vertices with w=0 to increase dramatically which is also undesirable. 

6   Experimental Results 

To evaluate the effectiveness of our profile fixup technique, we applied our algorithm 
on benchmarks from the SPECint2000 suite and measured the accuracy using a 
criterion called degree of overlap. The comparison was done between the fixed 
dynamic control flow graph of the program and the actual dynamic control flow graph 
collected using full edge instrumentation and profile collection on the ref input. In 
order to gather complete edge profiling we used the IBM post-link optimizer FDPR-
Pro [8] which can statically instrument a given executable and generate an 
instrumented version which produces an accurate edge profile file when run. We also 
measured the performance impact on each of the SPECint2000 benchmarks when 
applying FDPR-Pro –O3 optimizations when using as profile input the low-rate 
sampling profiling fixed by our technique versus full accurate profiling gathered by 
FDPR-Pro instrumentation. In addition we also refer to an addition measure called 
degree of overlap. The degree of overlap metric is used to compare the completeness 
of one control flow graph with respect to another, and has been used in several other 
research papers [15, 16, 17, 18]. The definition is as follows: 

( )
( ) ( )
∑

∩∈

=
21

)2,(),1,(min)2,1(
cfgEcfgEe

cfgepwcfgepwcfgcfgoverlap  (7) 

Where pw(e,cfg) is defined as the percentage of cfg’s total edge weights represented 
by the edge weight on e. Only edges on both CCT1 and CCT2 are counted, in our 
specific problem there edge sets of cfg1 and cfg2 are identical so that 

)2()1()2()1( cfgEcfgEcfgEcfgE ∪=∩ . The degree of overlap indicates how 

cfg2 overlaps with cfg1 or how cfg2 is covered by cfg1. The degree of overlap range 
is from 0% to 100%. The experiments were conducted on the IBM AIX POWER 5 
platform with SPECint2000 benchmarks compiled for 32bit. The SPECint2000 or 
CPU2000 suite is primarily used to measure workstation performance but was 
designed to run on a broad range of processors as stated in [20]: "SPEC designed 
CPU2000 to provide a comparative measure of compute intensive performance across 
the widest practical range of hardware". Although it may be hard to imagine that 
applications such as gcc (C compiler), vpr (circuit placement), or twolf (circuit 
simulation) running on hand held devices, others such as gzip (compression), parser 
(word processing), and eon (visualization) are sure to be. The sampling data was 
collected using the IBM AIX tprof command which samples running applications and 
makes use of the POWER 5 hardware counters. The cell Oprofile tool provides 
similar capabilities for the cell embedded processor [22, 23]. For collecting the 
sampled frequency for the SPECint2000 programs we sampled the Instruction 
Complete hardware counter ( PM_INST_CMPL ) every ~1,000,000 instructions. This 
created a relatively small overhead of 2% - 3% on the runtime of each sampled 
program. 
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6.1   Filling Edge Profile from Vertex Profile 

We first began by using FDPR-Pro to collect basic block profile alone, on the 
SPECint2000 benchmarks and then apply our technique to fill in the missing edge 
profile. Our measurements show, that when using our technique in such a way that the 
confidence constants for changing counts on basic blocks are set to ∞ , and costs for 
changing costs on edges is set using the heuristics proposed by Youfeng Wu and 
James R. Larus [4], we reach an average degree of overlap that is higher than 99%, 
which obviously yields a negligible immeasurable performance delta when comparing 
to using full edge profile collected by FDPR-Pro. The conclusion is therefore, that 
when using our proposed method for filling in the missing edge profile, vertex profile 
is as good as edge profile for any practical purpose. 

6.2   Approximating Dynamic Control Flow for External Sampling 

A more challenging problem is creating an approximation for full edge profile when 
only partial, external sampling information exists. For this purpose we used tprof, 
which is an AIX tool for externally collecting hardware events using sampling. We 
used tprof to collect instruction complete events once every 1,000,003 events. 
Collecting the profile at such a low rate reduces the run-time of the SPECint2000 
applications by 2-3%. Note that selecting a prime number as the event counter is 
advised since it reduces the chance for synchronization in a loop. If, for example, a 
trace containing 100 instructions occurs many millions of times sequentially and we 
would sample every 1,000,000 events we would hit the same instruction every time, 
and this would yield a false view on the counts in that trace of instructions. 

The initial flow estimate w(v) is set as follows:  

( )
ratesamplevinstrsofnum

inssampled
vw Vins

_)(__

)(

⋅
=

∑
∈  (8) 

To measure the effectiveness of our technique we compared the degree of overlap and 
the performance gain with the full edge profile collected by FDPR-Pro and compared it 
to the degree of overlap and performance gain that was achieved without applying our 
method, which uses the calculated w(o) (see above) for each UVo ∪∈ . The results of 
our measurements are presented in tables 1, 2 and in figure 3. 

Table 1. Degree of overlap comparison 

Benchmark degree of overlap: Sampled 
profile vs. Full profile 

degree of overlap: fixed Sampled 
profile vs. Full profile 

Parser 72% 81% 
Bzip 70% 80% 

Crafty 53% 62% 
Gap 66% 92% 
Gzip 72% 93% 
Gcc 65% 78% 
Mcf 83% 89% 

Twolf 66% 82% 
Vpr 71% 83% 

Average 69% 82%  
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Table 2. Runtime comparison  

 
 

Bench-
mark 

Runtime 
after 

FDPR 
O3 

using 
sampled 

Runtime 
after 

FDPR 
O3 

using 
fixed 

sampled 

Runtime 
after 

FDPR 
O3 

using 
full 

profile 
parser 5.2% 6.6% 7.2% 
bzip 3.8% 5% 5% 

crafty 4.1% 4.5% 6% 
gap 8.5% 13.5% 13.2% 
gzip 12% 16.5% 16.5% 
gcc 4.35% 3.4% 4.4% 
mcf 8% 8.5% 8.5% 

twolf 10.25% 12.25% 14.1% 
vpr 8.2% 8.8% 9.3%  

 

Fig. 3. fixed vs. unfixed sampling 

   Note: The percentages above refer to per 
formance improvement compared to the 
base runtime. 

 

 

The average degree of overlap, using our technique, calculated on SPECint2000 is 
82% compared to 62% without using the fix. The average performance gain is only 
0.6% less than when using the full edge profile, while without using the suggested fix, 
the average performance gain is 2.2% less than the full edge profile. Finally, the 
average improvement in degree of overlap is 21% and we reach a 1.8% average 
improvement in performance when compared to not using our fixup algorithm. 

7   Future Directions 

Our fixup technique can be used for a wide variety of profiling problems. Collection 
of inaccurate or lacking profile information may be due to several reasons, other than 
those addressed in the paper, such as the following: 

 

• After applying several optimizations, such as function cloning, inlining, or after 
applying optimizations such as constant/value-range propagation which may 
eliminate edges in the control flow graph, the original profile information 
becomes inconsistent and needs to be corrected. In most cases, re-running the 
profiling phase on the modified program is not desirable. 

• When profiling a multithreaded or multiprocessed application some counter 
promotions may be missing as a result of multiple threads/processes incrementing 
the same counter without synchronization. Adding synchronization to each 
vertex's/edge's counter may be undesirable due to additional runtime overhead 
and additional memory to be used as a mutex for each basic block/edge. 

• When reusing profile information from older versions of the program. 
 

Another future direction can be fining the optimal flow-fix, our fixup vector, with 

respect to different cost types such as minimizing ∞L  or 2L  (the least mean squares) 
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and the weighted version of each. The weighted ∞L can be minimized by using linear 

program along with a form of binary search. The weighted 2L  can be minimized by 

convex optimization using interior-point methods, Lagrange methods and several others. 

8   Summary 

We defined a technique for effectively fixing inaccurate and incomplete control flow 
profile information. This allows using non-intrusive low overhead profile techniques 
to collect profile for real-time embedded applications and then effectively using our 
technique to enhance the profile data and make it reasonably accurate. We 
implemented our technique and measured how well it performs when filling in edge 
profile from vertex profile and from instruction complete event counter run on a set of 
representative benchmarks. We showed that when applying over vertex profile, edge 
profile can be derived almost perfectly and when applying over the suggested 
sampling technique, we may reach an average overlap degree of 82%. When applying 
our technique into a post-link optimizer called FDPR-Pro, we reach an average 
performance gain which is only 0.6% less than when using full, accurate edge profile 
gathered using edge instrumentation. More generally, this suggests a platform 
independent, low overhead profiling scheme (2-3% overhead) with a high degree of 
accuracy. In addition we also show that when applying our technique over vertex 
profile we can fill in the missing edge profile with almost perfect overlap. 
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Abstract. Modern benchmark suites (e.g., SPECCPU2006) takemonths
to simulate. Researchers andpractitioners thus use partial simulation tech-
niques for efficiency, and hope to avoid sacrificing accuracy. SimPoint is
a popular method of choosing representative parts that approximate an
application’s entire behavior. The approach breaks an application into in-
tervals, generates a Basic Block Vector (BBV) to represent instructions
executed in each interval, clusters the BBVs according to similarity, and
chooses a representative interval from the most important clusters. Unfor-
tunately, tools to generate BBVs efficiently have heretofore been widely
unavailable for many architectures, especially embedded ones.

We develop plugins for both the Qemu and Valgrind dynamic binary
instrumentation (DBI) tools, and compare results to those generated by
the PinPoints utility. All three methods can deliver under 6% average
CPI error on both the SPEC CPU2000 and CPU2006 benchmarks while
running under 0.4% of the total applications. Our tools increase the
number of architectures for which BBVs can be generated efficiently
and easily; they enable simulation points that include operating system
activity; and they allow cross-platform collection of BBV information
(e.g., generating MIPS SimPoints on IA32). We validate our tools via
hardware performance counters on nine 32-bit Intel Linux platforms.

1 Introduction

Cycle-accurate simulators are slow. Using one to run a modern benchmark suite
such as SPEC CPU2006 [16] can take months to complete when full reference
inputs are used. This prohibitive slowdown prevents most modelers from using
the full reference inputs. Yi et al. [18] investigate the six most common ways of
speeding up simulations:
– Representative sampling (SimPoint [13]),
– Statistics based sampling (SMARTS [17]),
– Reduced input sets (MinneSPEC [6]),
– Simulating the first X Million instructions,
– Fast-forwarding Y Million instructions and simulating X Million, and
– Fast-forwarding Y Million, performing architectural warmup, then simulat-

ing X Million.

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 305–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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They conclude that SimPoint and SMARTS give the most accurate results. Over
70% of the previous 10 years of HPCA, ISCA, and MICRO papers (ending in
2005) use reduced simulation methods that are less accurate. Most remaining
papers use full input sets. Sampling is thus an under-utilized technique that can
greatly increase the breadth and accuracy of computer architecture research.

Collecting data needed by SimPoint is difficult and time consuming; we
present two tools to more easily generate the Basic Block Vectors (BBVs) that
SimPoint needs. Our tools greatly expand the platforms for which BBVs can
be generated, including a number of embedded platforms. We implement the
tools using dynamic binary instrumentation (DBI), a technique that generates
BBVs much faster than simulation. DBI tools are easier to use than simulators,
removing many barriers to wider SimPoint use. Features inherent in the tools we
extend make it possible to collect data that previous tools cannot.This includes
creating cross-platform BBV files (e.g., generating MIPS BBVs from MIPS bina-
ries on an IA32 host), as well as collecting BBVs that include operating system
information along with normal user-space information.

We validate the generated BBVs and compare them against the PinPoint [10]
BBVs generated by the Pin utility. We validate all three methods using hard-
ware performance counters while running the SPEC CPU2000 [15] and SPEC
CPU2006 [16] benchmark suites on a variety of 32-bit Intel Linux system. Our
website contains source code for our Qemu and Valgrind modifications.

2 Generating Simulation Points

SimPoint exploits phase behavior in programs. Many applications exhibit cyclic
behavior: code executing at one point in time behaves similarly to code running
at some other point. Entire program behavior can be approximated by modeling
only a representative set of intervals (in our case, simulation points or SimPoints).

Figures 1, 2, and 3 show examples of program phase behavior at a granularity
of 100M instructions; these are captured using hardware performance counters
on the CPU2000 benchmarks. Each figure shows two metrics: the top is L1 D-
Cache miss rate, and the bottom is cycles per instruction (CPI). Figure 1 shows
twolf, which exhibits almost completely uniform behavior. For this type of pro-
gram, one interval is enough to approximate whole-program behavior. Figure 2
shows the mcf benchmark, which has more complex behavior. Periodic behavior
is evident: representative intervals from the various phases can be used to ap-
proximate total behavior. The last example, Figure 3, shows the extremely com-
plex behavior of gcc running the 200.i input set. Few patterns are apparent;
this type of program is difficult to approximate with the SimPoint methodol-
ogy (smaller phase intervals are needed to recognize patterns, and variable-size
phases are possible, but choosing appropriate interval lengths is non-trivial). We
run the CPU2000 benchmarks on nine implementations of architectures running
the IA32 ISA, finding that phase behavior is consistent across all platforms when
using the same binaries, despite large differences in hardware process and design.
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Fig. 1. L1 Data Cache and CPI behavior for twolf: behavior is uniform throughout,
with one phase representing the entire program
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Fig. 2. L1 Data Cache and CPI behavior for mcf: several recurring phases are evident

To generate the simulation points for a program, the SimPoint tool needs a
Basic Block Vector (BBV) describing the code’s execution. Dynamic execution
is split into intervals (often fixed size, although that is not strictly necessary).
Interval size is measured by number of committed instructions, usually 1M-
300M instructions. Smaller sizes enable finer grained phase detection; larger sizes
mitigate warmup error when fast-forwarding (without explicit state warmup) in
a simulator. We use 100M instruction intervals, which is a common compromise.

During execution, a list is kept of all basic blocks executed, along with a count
of how many times each block is executed. The block count is weighted by the
number of instructions in each block to ensure that instructions in smaller basic
blocks are not given disproportionate significance. When total instruction count
reaches the interval size, the basic block list and frequency count are appended
to the BBV file. The SimPoint methodology uses the BBV file to find simulation
points of interest by K-means clustering. The algorithm selects one representa-
tive interval from each phase identified by clustering. Number of phases can be
specified directly, or the tool can search within a given range for an appropriate
number of phases. The final step in using SimPoint is to gather statistics for
all chosen simulation points. For multiple simulation points, the SimPoint tools
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Fig. 3. L1 Data Cache and CPI behavior for gcc.200: this program exhibits complex
behavior that is hard to capture with phase detection

generate weights to apply to the intervals (and several SimPoints must be mod-
eled for accurate results). By scaling the statistics by the corresponding weights,
an accurate approximation of entire program behavior can be estimated quickly
(within a small fraction of whole-application simulation time).

2.1 BBV Generation

The BBV file format looks like:

T:45:1024 :189:99343
T:11:78573 :15:1353 :56:1
T:18:45 :12:135353 :56:78 314:4324263

A T signifies the start of an interval, and is followed by a series of colon sepa-
rated pairs; the first is a unique number specifying a basic block, and the second
is the scaled frequency count. There are many methods for gathering informa-
tion needed to create such BBV files. Requirements are that the tool count the
number of committed instructions and track entries into every basic block. The
SimPoint website only provides BBV generation tools using ATOM [14] and
SimpleScalar [1] sim-alpha. These are useful for experiments involving the Al-
pha processor, but that architecture has declined in significance. There remains
a need for tools to generate BBVs on a wider range of platforms.

Our first attempt used DynInst [3], which supports many platforms, operating
systems, and architectures. Unfortunately, the tool is not designed for generating
BBVs, and memory overhead for instrumenting some of the benchmarks exceeds
4GB. Furthermore, the tool works with dynamically linked applications. We hope
to use future versions, and work with the DynInst developers to generate BBVs
without undue overheads. In contrast, Qemu [2] and Valgrind [9] already provide
capabilities needed with acceptable overhead, and we modify these two DBI tools
to generate BBVs. To validate our methods, we compare results to those from
the Pin [7] tool. Figure 4 shows architectures supported for each tool; since all
run on Intel platforms, we use them as a common reference.
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Fig. 4. Architectures supported by Pin, Qemu, and Valgrind: IA32 is the ideal platform
for comparison, as it is supported by all of three tools

2.2 Pin

Pin [7] is a dynamic binary instrumentation tool that runs on Intel architectures
(including IA32, Intel 64, Itanium, and Xscale), and it supports Linux, Windows,
and Macintosh OSX operating systems. We use the PinPoint [10] BBV gener-
ation tool bundled with version pin-2.0-10520-gcc.4.0.0-ia32-linux. Pin analysis
routines are written in C++, and the instrumentation happens just-in-time, with
the resulting instrumented code cached for performance. The core of Pin is pro-
prietary, so internals must be treated as a black box. PinPoint analyses run from
1.5 (swim) to 20 (vortex) times slower than the binary run on native hardware.

2.3 Qemu

Qemu [2] is a portable dynamic translator. It is commonly used to run a full op-
erating system under hardware emulation, but it also has a Linux user-space em-
ulator that runs stand-alone Linux binaries using system-call translation. Qemu
supports the Alpha, SPARC, PowerPC, sh4, IA32, AMD64, MIPS, m68k, and
ARM architectures. The user-mode translation we use is currently supported on
Linux. Ongoing work will support more operating systems. Qemu uses gcc to
compile code corresponding to each intermediate language micro-operation. At
translation time, these pre-compiled micro-operations are chained together to
create translated basic blocks that are cached.

Qemu is not designed for DBI. Using it for our purposes requires intrusive
changes to Qemu source. Our code is a patch applied on top of the Qemu 0.9.0
release. We add a unique identifier field to the internal TargetBlock basic block
structure, which is set the first time a BB is translated. At translation time, we
instrument every instruction to call our BBV tracking routine to update BBV
counts and total instruction count. Once the interval size is reached, the BBV
file is updated, and all counters are reset. Qemu runs from between 4 (art) to
40 (vortex) times slower than native execution. This makes it slower than Pin
but faster than our Valgrind implementation.
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Note that gcc uses an extremely large stack. By default Qemu only emulates
a 512KB stack, but the -s command-line option enables at least 8MB of stack
space, which allows all gcc benchmarks to run to completion.

2.4 Valgrind

Valgrind [9] is a dynamic binary instrumentation tool for the PowerPC, IA32,
and AMD64 architectures. It was originally designed to detect application mem-
ory allocation errors, but it has developed into a generic and flexible DBI utility.
Valgrind translates native processor code into a RISC-like intermediate code. In-
strumentation occurs on this intermediate code, which is then recompiled back
to the native instruction set. Translated blocks are cached.

Our BBV generation code is a plugin to Valgrind 3.2.3. By default, Val-
grind instruments at a super-block level rather than the basic block level. A
super-block only has one entrance, but can have multiple exit points. We use
the --vex-guest-chase-thresh=0 option to force Valgrind to use basic blocks,
although our experiments show that using super-blocks yields similar results.
Valgrind implements just-in-time translation of the program being run. We in-
strument every instruction to call our BBV generation routine. It would be more
efficient to call only the routine once per block, but in order to work around some
problems with the “rep” instruction prefix (described later) we must instrument
every instruction. When calling our instruction routine, we look up the current
basic block in a hash table to find a data structure that holds the relevant statis-
tics. We increment the basic block counter and the total instruction count. If
we finish an interval by overflowing the committed instruction count, we up-
date BBV information and clear all counts. Valgrind runs from 5 (art) to 114
(vortex) times slower than native execution, making it the slowest of the tools
we evaluate.

3 Evaluation

To evaluate the BBV generation tools, we use the SPEC CPU2000 [15] and
CPU2006 [16] benchmarks with full reference inputs. We compile the benchmarks
on SuSE Linux 10.2 with gcc 4.1 and “-O2” optimization (except for vortex,
which we compile without optimization because it crashes, otherwise). We link
binaries statically to avoid library differences on the machines we use to gather
data. The choice to use static linking is not due to tool dependencies; all three
handle both dynamic and static executables.

We choose IA32 as our test platform because it is widely used and because
all three tools support it. We use the Perfmon2 [5] interface to gather hardware
performance counter results for the platforms described in Table 1.

The performance counters are set to write out the the relevant statistics every
100M instructions. The data collected are used in conjunction with simulation
points and weights generated by SimPoint to calculate estimated CPI. We cal-
culate actual CPI for the benchmarks by using the performance counter data,
and use this as a basis for our error calculations. Note that calculated statistics
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Table 1. Machines used

machine processor memory L1 I/D L2/L3 Cache performance counters used
nestle 400MHz Pentium II 256MB 16KB/16KB 512KB inst retired,

cpu clk unhalted
spruengli 550MHz Pentium III 512MB 16KB/16KB 512KB inst retired,

cpu clk unhalted
itanium 800MHz Itanium 1GB 16KB/16KB 96KB/3MB ia32 inst retired,

cpu cycles
chocovic 1.66GHz Core Duo 1GB 32KB/32KB 1MB instructions retired,

unhalted core cycles
milka 1.733MHz Athlon MP 512MB 64KB/64KB 256KB retired instructions,

cpu clk unhalted
gallais 1.8GHz Pentium 4 256MB 12Kμ/16KB 256KB instr retired:nbogusntag,

global power events:running
jennifer 2GHz Athlon64 X2 1GB 64KB/64KB 512KB retired instructions,

cpu clk unhalted
sampaka12 2.8GHz Pentium 4 2GB 12Kμ/16KB 512KB instr retired:nbogusntag,

global power events:running
domori25 3.46GHz Pentium D 4GB 12Kμ/16KB 2MB instr retired:nbogusntag,

global power events:running

are ideal, with full warmup. If we were analyzing via a simulation, the results
would likely vary in accuracy depending on how architectural state is warmed up
after fast-forwarding between simulation points. We use SimPoint version 3.2,
the newest version from the SimPoint website, to generate our simulation points.

3.1 The Rep Prefix

When validating against actual hardware, total retired instruction counts closely
match Pin results, but Qemu and Valgrind results diverge on certain benchmarks.
We find the cause of this problem to be the IA32 rep prefix. This prefix appears
before string instructions (which typically implement a memory operation fol-
lowed by a pointer auto-increment). The prefix causes the string instruction to
repeat, decrementing the ecx register until it reaches zero. A naive implementa-
tion of the rep prefix treats each repetition as a committed instruction. In actual
hardware, this instruction is grouped in multiples of 4096, so only every 4096th

repetition counts as one committed instruction. The performance counters and
Pin both show this behavior. Our Valgrind and Qemu plugins are modified to
compensate for this, so that we achieve consistent committed instruction counts
across all of the BBV generators and actual hardware.

3.2 The Art Benchmark

Under Valgrind, the art floating point benchmark finishes with half the number
of instructions committed by actual hardware. Valgrind uses 64-bit floating point
arithmetic for portability reasons, but by default on Linux IA32, programs use
80-bit floating point operations. The art benchmark unwisely uses the “==”
C operator to compare two floating point numbers, and due to rounding errors
between the 80-bit and 64-bit versions, the 64-bit version can finish early, while
still generating the proper reference output.
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Fig. 5. Average CPI error for CPU2000 when using first, blind fast-forward, and Sim-
Point selected intervals on various IA32 machines: when using up to 10 simulation
points per benchmark, average error is 5.3% for Pin, 5.0% for Qemu, and 5.4% for
Valgrind

Having vastly different numbers of completed instructions interferes with sim-
ulation point generation, since it limits SimPoint intervals to only part of the
complete execution. In order to have the benchmark finish with the same number
of instructions, we modify art to execute an IA32 assembly instruction to force
the FPU to use 64-bit arithmetic. This small change makes the performance
counter, Pin, and Valgrind results match. Unfortunately, this does not work for
Qemu, which ignores the settings and always uses 80-bit operations.

There are solutions to this problem. One is to use the -msse2 option of gcc
to use the 64-bit SSE2 unit instead of the 80-bit x87 floating point unit. Not
all of our machines support SSE2, so that workaround is not available. Another
option is to use another compiler, such as the Intel C Compiler, which has specific
compiler options to enable 64-bit floating point. This does not work with Qemu,
which uses 80-bit operations regardless. Therefore we modify the benchmark,
and let Qemu generate skewed results.

4 Results

Figure 5 shows results for the SPEC CPU2000 benchmarks. When allowing
SimPoint to choose up to 10 simulation points per benchmark, the average error
across all machines for CPI is 5.32% for Pin, 5.04% for Qemu, and 5.38% for Val-
grind. Pin chooses 354 SimPoints, Qemu 363, and Valgrind 346; this represents
only 0.4% of the total execution length, making the simulations finish 250 times
faster than if run to completion. It is reassuring that all three BBV methods pick
a similar number of intervals, and in many cases they pick the same intervals.

Figure 5 also shows results when SimPoint is allowed to pick up to 20 simula-
tion points. The results are better: error is 4.96% for Pin, 8.00% for Qemu, and
4.45% for Valgrind. This requires less than twice as much simulation — around
0.7% of the total execution length. The increase in error for Qemu is due to poor
SimPoint choices in the gcc benchmark with the 166.i input: on many of the
architectures, chosen intervals give over 100% error.
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In addition to the degree of error when using multiple simulation points,
Figure 5 shows error for other common methods of interval selection. The first
column shows error when running only the first 100M instructions from each
benchmark. This method of picking points is poor: error averages around 54%
for CPI. Another common method is fast-forwarding 1B instructions and then
simulating an interval beginning there (this is equivalent to always choosing the
10th interval as a single SimPoint). This produces better results than using the
first interval, but at 37%, the error is still large. Using SimPoint analysis but
only choosing one representative interval is a way to use the same amount of
simulation time as the previous two methods, but attempts to make a more
intelligent choice of which interval to run. As the graph shows, this behaves
much better than the blind methods, but the error is twice as large as that from
using up to 10 SimPoints.

Figures 6 and 7 show the CPI error for the individual benchmarks on the
Pentium D system. For floating point applications, facerec and fma3d have
significantly more error than the others. This is because those programs feature
phases which exhibit extreme shifts in CPI from interval to interval, a behavior
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often has trouble capturing. The integer benchmarks have the biggest source of
error, which is the gcc benchmarks. The reason gcc behaves so poorly is that
there are intervals during its execution where the CPI and other metrics spike.
These huge spikes do not repeat, and only happen for one interval; because of
this, SimPoint does not weight them as being important, and they therefore are
omitted from the chosen simulation points. These high peaks are what cause the
actual average results to be much higher than what is predicted by SimPoint.
It might be possible to work around this problem by choosing a smaller interval
size, which would break the problematic intervals into multiple smaller ones that
would be more easily seen by SimPoint.

We also use our BBV tools on the SPEC CPU2006 benchmarks. These runs
use the same tools as for CPU2000, without any modifications. These tools yield
good results without requiring any special knowledge of the newer benchmarks.
We do not have results for the zeusmp benchmark: it would not run under
any of the DBI tools. Unlike the CPU2000 results, we only have performance
counter data from four of the machines. Many of the CPU2006 benchmarks
have working sets of over 1GB, and many of our machines have less RAM than
that. On those machines the benchmarks take months to run, with the operating
system paging constantly to disk. The CPU2006 results shown in Figure 8 are
as favorable as the CPU2000 results. When allowing SimPoint to choose up to
10 simulation points per benchmark, the average error for CPI is 5.58% for Pin,
5.30% for Qemu and 5.28% for Valgrind. Pin chooses 420 simulation points,
Qemu 433, and Valgrind. This would require simulating only 0.056% of the total
benchmark suite. This is an impressive speedup, considering the long running
time of these benchmarks. Figure 8 also shows the results when SimPoint is
allowed to pick up to 20 simulation points, which requires simulating only 0.1%
of the total benchmarks. Average error for CPI is 3.39% for Pin, 4.04% for Qemu,
and 3.68% for Valgrind.

Error when simulating the first 100M instructions averages 102%, showing
that this continues to be a poor way to choose simulation intervals. Fast-
forwarding 1B instructions and then simulating 100M produces an average error
of 31%. Using only a single simulation point again has error over twice that
of using up to 10 SimPoints. Figures 9 and 10 show CPI errors for individual
benchmarks on the Pentium D machine. For floating point applications, there are
outlying results for cactusADM, dealII, and GemsFDTD. For these benchmarks,
total number of committed instructions measured by the DBI tools differs from
that measured with the performance counters. Improving the BBV tools should
fix these outliers.

As with the CPU2000 results, the biggest source of error is from gcc in the
integer benchmarks. The reasons are the same as described previously: Sim-
Point cannot handle the spikes in the phase behavior. The bzip2 benchmarks in
CPU2006 exhibit the same problem that gcc has. Inputs used in CPU2006 have
spiky behavior that the CPU2000 inputs do not. The other outliers, perlbench
and astar require further investigation.



Using Dynamic Binary Instrumentation 315

chocovic - Pentium M sampaka12 - Pentium 4 domori25 - Pentium D jennifer - Athlon 64
0

10

20

30

40

C
P

I E
rr

or
 (

%
)

first 100M
ffwd 1 Billion, 100M

Pin, one SimPoint
Qemu, one SimPoint
Valgrind, one SimPoint

Pin, up to 10 SimPoints
Qemu, up to 10 SimPoints
Valgrind, up to 10 SimPoints

Pin, up to 20 SimPoints
Qemu, up to 20 SimPoints
Valgrind, up to 20 SimPoints

63.7% 110.1% 124.7% 110.0%42.6%

Fig. 8. Average CPI error for CPU2006 on a selection of IA32 machines when using
first, blind fast-forward, and SimPoint selected intervals: when using up to 10 simulation
points per benchmark, average error is 5.6% for Pin, 5.30% for Qemu, and 5.3% for
Valgrind

bwaves

cactusADM
calculix

dealII

gamess.cytosine 

gamess.h2ocu2

gamess.tria
zolium

GemsFDTD

gromacs 
lbm

leslie3d
milc

namd
povray

soplex.pds-50

soplex.re
f

sphinx3
tonto wrf

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

Pin Qemu ValgrindFP Results, up to 20 SimPoints, Pentium D

-33.25-20.5

Fig. 9. Percent error in CPI on a Pentium D when using up to 20 SimPoints on CPU
2006 FP: the large variation in results for cactusADM, dealII and GemsFDRD are due
to unresolved inaccuracies in the way the tools count instructions

astar.B
igLakes

astar.ri
vers

bzip2.source 

bzip2.chicken

bzip2.lib
erty

bzip2.program

bzip2.html

bzip2.combined

gcc.166

gcc.200

gcc.c-typeck

gcc.cp-decl

gcc.expr

gcc.expr2

gcc.g23
gcc.s04

gcc.scilab

gobmk.13x13

gobmk.nngs

gobmk.score2

gobmk.tre
vorc

gobmk.tre
vord

h264ref.fo
re_base

h264ref.fo
re_main

h264ref.sss_main

hmmer.n
ph3

hmmer.re
tro

libquantum mcf

omnetpp

perlbench.checkspam 

perlbench.diffm
ail

perlbench.splitm
ail
sjeng

xalancbmk
-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

Pin Qemu ValgrindInteger Results, up to 20 SimPoints, Pentium D
12.1 10.7

-11.4

11.3

-36.3 -12.8

13.0

-12.6

11.5 13.1 15.6

Fig. 10. Percent error in CPI on a Pentium D when using up to 20 SimPoints on CPU
2006 INT: the large error with the gcc and bzip2 benchmarks is due to spikes in the
phase behavior not captured by SimPoint



316 V.M. Weaver and S.A. McKee

5 Related Work

Sherwood, Perelman, and Calder [12] introduce the use of basic block distribu-
tion to investigate phase behavior. They use SimpleScalar [4] to generate the
BBVs, as well as to evaluate the results for the Alpha architecture. They show
preliminary results for three of the SPEC95 benchmarks and three of the SPEC
CPU2000 benchmarks. They build on this work and introduce the original Sim-
Point tool [13]. They use ATOM [14] to collect the BBVs and SimpleScalar to
evaluate the results for the SPEC CPU2000 benchmark suite. They use an in-
terval of 10M instructions, and find an average 18% IPC error for using one
simulation point for each benchmark, and 3% IPC error using between 6 to 10
simulation points. These results roughly match ours. The benchmarks that re-
quire the most simulation points are ammp and bzip2, which is different from
the gcc bottleneck we find on the IA32 architecture. This is most likely due to
the different ISAs, as well as differences in the memory hierarchy.

Perelman, Hamerly and Calder [11] investigate finding “early” simulation
points that can minimize fast-forwarding in the simulator. This paper does not
investigate early points because that functionality is not available in current
versions of the SimPoint utility. When they look at a configuration similar to
ours, with 43 of the SPEC2000 reference input combinations, 100M instruction
intervals, and up to 10 simulations per benchmark, they find an average CPI
error of 2.6%. This is better than our results, but again this was done on the
Alpha architecture, which apparently lacks the gcc benchmark problems that
appear on the IA32 architectures. They collect BBVs and evaluate results with
SimpleScalar, showing that the results on one architectural configuration track
the results on other configurations while using the same simulation points. We
also find this to be true, but in our case we compare the results from various
real hardware platforms.

While many people use SimPoint in their research, often no mention is made
of how the BBV files are collected. If not specified, it is usually assumed that
the original method described by Sherwood et al. [13] is used, which involves
ATOM [14] or SimpleScalar [4]. Alternatively, the SimPoint website has a known
set of simulation points provided for pre-compiled Alpha SPEC CPU2000 bina-
ries, so that recalculating using SimPoint is not necessary. Other work sometimes
mentions BBV generation briefly, with no indication of any validation. For ex-
ample, Nagpurkar and Krintz [8] implement BBV collection in a modified Java
Virtual Machine in order to analyze Java phase behavior, but do not specify the
accuracy of the resulting phase detection.

Patil et al.’s work on PinPoints [10] is most similar to ours. They use the Pin [7]
tool to gather BBVs, and then validate the results on the Itanium architecture us-
ing performance counters. This work predates the existence of Pin for IA32, so no
IA32 results are shown. Their results show that 95% of the SPEC CPU2000 bench-
marks have under 8% CPI error when using up to ten 250M instruction intervals.
All their benchmarks complete with under 12% error, which is more accurate than
our results. One reason for this is that they use much longer simulation points, so
they are simulating more of each benchmark. They also investigate commercial
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benchmarks, and find that the results are not as accurate as the SPEC results.
These Itanium results, as in other previous studies, do not suffer from the huge
errors we find in the gcc benchmarks. This is probably due to the vastly different
architectures and memory hierarchies. Even for the minimally configured machine
they use, the cache is much larger than on most of our test machines. The bene-
fit of our study is that we investigate three different methods of BBV generation,
whereas they only look at Itanium results generated with Pin.

6 Conclusions and Future Work

We have develop two new BBV generation tools and show that they deliver
similar performance to that of existing BBV generation methods. Our Valgrind
and Qemu code can provide an average of under 6% CPI error while only running
0.4% of the total SPEC CPU2000 suite on full reference inputs. This is similar
to results from the existing PinPoints tool. Our code generates under 6% CPI
error when running under 0.06% of SPEC CPU2006 (excepting zeusmp) with full
reference inputs. The CPU2006 results are obtained without any special tuning
for those benchmarks, which indicates that these methods should be adaptable
to other benchmark workloads.

We show that our results are better than those obtained with other common
sampling methods, such as simulating the beginning of a program, simulating
after fast-forwarding 1B instructions, or only simulating one simulation point. All
of our results are validated with performance counters on a range of IA32 Linux
systems. In addition, our work vastly increases the number of architectures for
which efficient BBV generation is now available. With Valgrind, we can generate
PowerPC BBVs. Qemu makes it possible to generate BBVs for m68k, MIPS,
sh4, CRIS, SPARC, and HPPA architectures. This means that many embedded
platforms can now make use of SimPoint methodologies.

The potential benefits of Qemu should be further explored, since it can sim-
ulate entire operating systems. This enables collection of BBVs that include
full-system effects, not just user-space activity. Furthermore, Qemu enables sim-
ulation of binaries from one architecture directly on top of another. This allows
gathering BBVs for architectures where actual hardware is not available or is
excessively slow, and for experimental ISAs that do not exist yet in hardware.

Valgrind has explicit support for profiling MPI applications. It would be inter-
esting to investigate whether this can be extended to generate BBVs for parallel
programs, and to attempt to use SimPoint to speed up parallel workload de-
sign studies. Note that we would have to omit synchronization activity from the
BBVs in order to capture true phase behavior.

The poor results for gcc indicate that some benchmarks lack sufficient phase
behavior for SimPoint to generate useful simulation points. It might be neces-
sary to simulate these particular benchmarks fully in order to obtain sufficiently
accurate results, or to decrease the interval size. Determining why the poor re-
sults only occur on IA32, and do not occur on Alpha and Itanium architectures,
requires further investigation.
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Overall, these tools show great promise in encouraging use of SimPoint for
architectural studies. Our tools make generating simulation points fast and easy,
and will help others in generating more accurate results in their experiments.
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Abstract. It is well known that a program execution exhibits time-varying be-
havior, i.e., a program typically goes through a number of phases during its execu-
tion with each phase exhibiting relatively homogeneous behavior within a phase
and distinct behavior across phases. In fact, several recent research studies have
been exploiting this time-varying behavior for various purposes.

This paper proposes phase complexity surfaces to characterize a computer
program’s phase behavior across various time scales in an intuitive manner. The
phase complexity surfaces incorporate metrics that characterize phase behavior in
terms of the number of phases, its predictability, the degree of variability within
and across phases, and the phase behavior’s dependence on the time scale granu-
larity.

1 Introduction

Understanding program behavior is at the foundation of computer system design and
optimization. Deep insight into inherent program properties drive software and hard-
ware research and development. A program property that has gained increased inter-
est over the past few years, is time-varying program behavior. Time-varying program
behavior refers to the observation that a computer program typically goes through a
number of phases at run-time with relatively stable behavior within a phase and dis-
tinct behavior across phases. Various research studies have been done towards exploit-
ing program phase behavior, for example for simulation acceleration [9,26], hardware
adaptation for energy consumption reduction [1,6,7,27], program profiling and opti-
mization [11,21], etc.

This paper concerns characterizing a program’s phase behavior. To identify phases,
we divide a program execution into non-overlapping intervals. An interval is a contigu-
ous sequence of instructions from a program’s dynamic instruction stream. A phase is a
set of intervals within a program’s execution that exhibit similar behavior irrespective of
temporal adjacency, i.e., a program execution may go through the same phase multiple
times.

Basically, there are four properties that characterize a program’s phase behavior.

– The first property is the time scale at which time-varying program behavior is being
observed. Some programs exhibit phase behavior at a small time granularity while
other programs only exhibit phase behavior at a coarse granularity; and yet other
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programs may exhibit phase behavior at various time scales, and the phase behavior
may be hierarchical, i.e., a phase at one time scale may consist of multiple phases
at a finer time scale.

– The second property is the number of phases a program goes through at run-time.
Some programs repeatedly stay in the same phase, for example when executing
the same piece of code over and over again; other programs may go through many
distinct phases.

– The third property concerns the variability within phases versus the variability
across phases. The premise of phase behavior is that there is less variability within
a phase than across phases, i.e., the variability in behavior for intervals belonging
to a given phase is fairly small compared to intervals belonging to different phases.

– The fourth and final property relates to the predictability of the program phase
behavior. For some programs, its time-varying behavior is very regular and by con-
sequence very predictable. For other programs on the other hand, time-varying be-
havior is rather complex, irregular and hard to predict.

Obviously, all four properties are related to each other. More in particular, the time
scale determines the number of phases to be found with a given degree of homogeneity
within each phase; the phases found, in their turn, affect the predictability of the phase
behavior. By consequence, getting a good understanding of a program’s phase behavior
requires all four properties be characterized simultaneously.

This paper presents phase complexity surfaces as a way to characterize program
phase behavior. The important benefit over prior work in characterizing program phase
behavior is that phase complexity surfaces capture all of the four properties mentioned
above in a unified and intuitive way while enabling the reasoning in terms of these four
properties individually.

As a subsequent step, we use these phase complexity surfaces to characterize and
classify programs in terms of their phase behavior. Within SPEC CPU2000 we identify
a number of prominent groups of programs with similar phase behavior. Researchers
can use this classification to select benchmarks for their studies in exploiting program
phase behavior.

2 Related Work

There exists a large body of related work on program phase behavior. In this section,
we only discuss the issues covered in prior work that relate most closely to this paper.

Granularity. The granularity at which time-varying behavior is studied and exploited
varies widely. Some researchers look for program phase behavior at the 100K instruc-
tion interval size [1,6,7]; others look for program phase behavior at the 1M or 10M in-
struction interval granilarity [23]; and yet others identify phase behavior at yet a larger
granularity of 100M or even 1B instructions [22,26]. The granularity chosen obviously
depends on the purpose of the phase-level optimization. The advantage of a small time
scale is that the optimization can potentially achieve better performance because the
optimization can be applied more aggressively. A larger time scale on the other hand
has the advantage that the overhead of exploiting the phase behavior can be amortized
more easily.
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Some researchers study phase behavior at different time scales simultaneously.
Wavelets for example provide a natural way of characterizing phase behavior at var-
ious time scales [4,13,24], and Lau et al. [17] identify a hierarchy of phase behavior.

Fixed-length versus variable-length phases. Various researchers aim at detecting
phase behavior by looking into fixed-length instruction intervals [1,6,7]. The potential
problem with the fixed-length interval approach though is that in some cases it may be
hard to identify phase behavior because of the effect of dissonance between the fixed-
length interval and the natural period of the phase behavior. In case the length of the
fixed-length interval is slightly smaller or bigger than the period of the phase behavior,
the observation made will be out of sync with the natural phase behavior. To address
this issue, some researchers advocate identifying phases using variable-length inter-
vals. Lau et al. [17] use pattern matching to find variable-length intervals, and in their
follow-on work [16] they identify program phases by looking into a program’s control
flow structure consisting of loops, and methods calls and returns. Huang et al. [12] de-
tect (variable-length) phases at method entry and exit points by tracking method calls
via a call stack.

Microarchitecture-dependent versus microarchitecture-independent character-
ization. Identifying phases can be done in a number of ways. Some identify pro-
gram phase behavior by inspecting microarchitecture-dependent program behavior, i.e.,
they infer phase behavior from inspecting time-varying microarchitecture performance
numbers. For example, Balasubramonian et al. [1] collect CPI and cache miss rates.
Duesterwald et al. [8] collect IPC numbers, cache miss rates and branch misprediction
rates. Isci and Martonosi [14] infer phase behavior from power vectors. A concern with
microarchitecture-dependent based phase detection is that once phase behavior is being
exploited, it may affect the microarchitecture-dependent metrics being measured; this
potentially leads to the problem where it is unclear whether the observed time-varying
behavior is a result of natural program behavior or is a consequence of exploiting the
observed phase behavior.

An alternative approach is to measure microarchitecture-independent metrics to infer
phase behavior from. Dhodapkar and Smith [7,6] for example keep track of a program’s
working set; when the working set changes, they infer that the program transitions to
another phase. Sherwood et al. [26] use Basic Block Vectors (BBVs) to keep track of the
basic blocks executed — BBVs are shown to correlate well with performance in [18].
Other microarchitecture-independent metrics are for example memory addresses [13]
and data reuse distances [24], a program’s control flow structure such as loops and
methods [11,12,16], a collection of program characteristics such as instruction mix,
ILP, memory access patterns, etc. [9,19].

Phase classification. Different researchers have come up with different approaches to
partitioning instruction intervals into phases. Some use threshold clustering [6,7,27];
others use machine learning techniques such as k-means clustering [26], pattern match-
ing [17,24]; yet others use frequency analysis through wavelets [4,5,13,24].

Phase prediction. An important aspect to exploiting phase behavior is to be able to
predict and anticipate future phase behavior. Sherwood et al. [27] proposed last phase,
RLE and Markov phase predictors. In their follow-on work [20], they added confidence
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counters to the phase predictors. Vandeputte et al. [28] proposed conditional update
which only updates the phase predictor at the lowest confidence level.

Relation to this paper. In this paper, we characterize program phase behavior at differ-
ent time scale granularities. To this end, we consider fixed-length intervals, use BBVs
to identify phase behavior, use threshold clustering for phase classification, and use a
theoretical predictor to study phase predictability. We will go in more detail about our
phase characterization approach in the next section.

The important difference between this paper compared to prior work is that the ex-
plicit goal of this paper is to characterize the complexity of a program’s phase behavior
in an intuitively understandable way. Most of this prior work on the other hand con-
cerned exploiting program phase behavior. The work mostly closely related to this pa-
per probably is the work done by Cho and Li [4,5]. They use wavelets to characterize
the complexity of a program’s phase behavior by looking at different time scales. This
complexity measure intermingles the four phase behavior properties mentioned in the
introduction; phase complexity surfaces on the other hand provide a more intuitive view
on a program’s phase behavior by factoring out all four properties.

3 Phase Complexity Surfaces

As mentioned in the introduction, there are four properties that characterize the pro-
gram’s overall phase behavior: (i) the time scale, (ii) the number of phases, (iii) the
within and across phase variability, and (iv) phase sequence and transition predictabil-
ity. The phase behavior characterization surfaces proposed in this paper capture all four
properties in a unified way. There are three forms of surfaces: the phase count sur-
face, the phase predictability surface and the phase complexity surface. This section
discusses all three surfaces which give an overall view of the complexity of a program’s
time-varying behavior. Before doing so, we first need to define a Basic Block Vector
(BBV) and discuss how to classify instruction intervals into phases using BBVs.

3.1 Basic Block Vector (BBV)

In this paper, we use the Basic Block Vector (BBV) proposed by Sherwood et al. [25]
to capture a program’s time-varying behavior. A basic block is a linear sequence of
instructions with one entry and one exit point. A Basic Block Vector (BBV) is a one-
dimensional array with one element per static basic block in the program binary. Each
BBV element captures how many times its corresponding basic block has been exe-
cuted. This is done on an interval basis, i.e., we compute one BBV per interval. Each
BBV element is also multiplied with the number of instructions in the corresponding
basic block. This gives a higher weight to basic blocks containing more instructions.
A BBV thus provides a picture of what portions of code are executed and also how
frequently those portions of code are executed.

We use a BBV to identify a program’s time-varying behavior because it is a micro-
architecture-independent metric and by consequence gives an accurate picture of a
program’s time-varying behavior across microarchitectures. Previous work by Lau et
al. [18] has shown that there exists a strong correlation between the code being exe-
cuted — this is what a BBV captures — and actual performance. The intuition is that if
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two instruction intervals execute roughly the same code, and if the frequency of the por-
tions of code executed is roughly the same, these two intervals should exhibit roughly
the same performance.

3.2 Phase Classification

Once we have a BBV per instruction interval, we now need to classify intervals into
phases. As suggested above, and intuitively speaking, this is done by comparing BBVs
to find similarities. Intervals with similar BBVs are considered belonging to the same
program phase.

Classifying instruction intervals into phases can be done in a number of ways. We
view it as a clustering problem. There exist a number of clustering algorithms, such as
linkage clustering, k-means clustering, threshold clustering, and many others. In this
paper, we use threshold clustering because it provides a natural way of bounding the
variability within a phase. As will become clear later, the advantage of using threshold
clustering is that, by construction, it builds phases for which the variability (in terms
of BBV behavior) is limited to a threshold θ. Classifying intervals into phases using
threshold clustering works in an iterative way. It selects an instruction interval as a
cluster center and then computes the distance with all the other instruction intervals. If
the distance measure is smaller than a given threshold θ, the instruction interval is con-
sidered to be part of the same cluster/phase. Out of all remaining instruction intervals
(not part of previously formed clusters), another interval is selected as a cluster center
and the above process is repeated. This iterative process continues until all instruction
intervals are assigned to a cluster/phase.

In our clustering approach we scan all instruction intervals once from the beginning
until the end of the dynamic instruction stream. This means that the clustering algorithm
has a complexity of O(kN) with N the number of instruction intervals and k clusters
(k << N ), which is much more efficient than the iterative approach as described above
which has an O(N2) computational complexity.

We use the Manhattan distance as our distance metric between two BBVs:

d =
D∑

i=1

‖Ai − Bi‖,

with A and B being two BBVs and Ai being the i-th element of BBV A; the dimen-
sionality of the BBV, or the number of basic blocks in the program binary, equals D.
The advantage of the Manhattan distance over the Euclidean distance is that it weighs
differences more heavily. Assuming that the BBVs are normalized — the sum over all
BBV elements equals one — the Manhattan distance varies between 0 (both BBVs are
identical) and 2 (maximum possible difference between two BBVs). The θ threshold is
expressed as a percentage of the maximum possible Manhattan distance between two
instruction intervals.

After having applied threshold clustering, there are typically a number of clusters
that represent only a small fraction of the total program execution, i.e., clusters with a
small number of cluster members. We group all the smallest clusters to form a single
cluster, the so called transition phase [20]. The transition phase accounts for no more
than 5% of the total program execution.
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3.3 Phase Count Surfaces

Having discussed how to measure behavioral similarity across instruction intervals us-
ing BBVs and how to group similar instruction intervals into phases through threshold
clustering, we can now describe what a phase count surface looks like. A phase count
surface shows the number of program phases as a function of intra-phase variability
across different time scales, i.e., each point on a phase count surface shows the number
of program phases at a given time scale at a given intra-phase variability threshold. The
time scale is represented as the instruction interval length, and the per-phase variability
is represented by θ used to drive the threshold clustering.

3.4 Phase Predictability Surfaces

As a result of the threshold clustering step discussed in the previous section, we can now
assign phase IDs to all the instruction intervals. In other words, the dynamic instruction
stream can be represented as a sequence of phase IDs with one phase ID per instruction
interval in the dynamic instruction stream. We are now concerned with the regularity
or predictability of the phase ID sequence. This is what a phase predictability surface
characterizes.

Prediction by Partial Matching. We use the Prediction by Partial Matching (PPM)
technique proposed by Chen et al. [3] to characterize phase predictability. The reason
for choosing the PPM predictor is that it is a universal compression/prediction technique
which presents a theoretical basis for phase prediction, and is not tied to a particular
implementation.

A PPM predictor is built on the notion of a Markov predictor. A Markov predictor
of order k predicts the next phase ID based upon k preceding phase IDs. Each entry in
the Markov predictor records the number of phase IDs for the given history. To pre-
dict the next phase ID, the Markov predictor outputs the most likely phase ID for the
given k-length history. An m-order PPM predictor consists of (m+1) Markov predictors
of orders 0 up to m. The PPM predictor uses the m-bit history to index the mth order
Markov predictor. If the search succeeds, i.e., the history of phase IDs occurred pre-
viously, the PPM predictor outputs the prediction by the mth order Markov predictor.
If the search does not succeed, the PPM predictor uses the (m-1)-bit history to index
the (m-1)th order Markov predictor. In case the search misses again, the PPM predictor
indexes the (m-2)th order Markov predictor, etc. Updating the PPM predictor is done by
updating the Markov predictor that makes the prediction and all its higher order Markov
predictors. In our setup, we consider a 32-order PPM phase predictor.

Predictability surfaces. A phase predictability surface shows the relationship be-
tween phase predictability and intra-phase variability across different time scales. Each
point on a phase predictability surface shows the phase predictability as a function of
time scale (quantified by the instruction interval granularity) and intra-phase variability
(quantified by the θ parameter used during threshold clustering). Phase predictability
itself is measured through the PPM predictor, i.e., for a given θ threshold and a given
time scale, we report the prediction accuracy by the PPM predictor to predict phase IDs.
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3.5 Phase Complexity Surfaces

Having discussed both the phase count surface as well as the phase predictability sur-
face, we can now combine both surfaces to form a so called phase complexity surface.
A phase complexity surface shows phase count versus phase predictability across dif-
ferent time scales. A phase complexity surface is easily derived from the phase count
and predictability surfaces by factoring out the θ threshold. In other words, each point
on the phase complexity surface corresponds to a particular θ threshold which deter-
mines phase count and predictability at a given time scale. The motivation for the phase
complexity surface is to represent an easy-to-grasp intuitive view on a program’s phase
behavior through a single graph.

3.6 Discussion

Time complexity. The time complexity for computing phase complexity surfaces is
linear as all of the four steps have a linear-time complexity. The first step computes
the BBVs at the smallest interval granularity of interest. This requires a functional sim-
ulation or instrumentation run of the complete benchmark execution; the overhead is
limited though. The second step computes BBVs at larger interval granularities by
aggregating the BBVs from the previous step. This step is linear in the number of
smallest-granularity intervals. The third step applies threshold clustering at all inter-
val granularities. As mentioned in the paper, the basic approach to threshold clustering
is an iterative process, our approach though makes a linear scan over the BBVs. Once
the phase IDs are determined through the clustering step, the fourth step then deter-
mines the phase predictability by predicting next phase IDs — again, this is linear-time
complexity.

Applications. The phase complexity surfaces provide a number of potential appli-
cations. One is to select representative benchmarks for performance analysis based on
their inherent program phase behavior. A set of benchmarks that represent diverse phase
behaviors can capture a representative picture of the benchmark suite’s phase behavior;
this will be illustrated further in section 6. Second, phase complexity surfaces are also
useful in determining an appropriate interval size for optimization. For example, reduc-
ing energy consumption can be done by downscaling hardware resources on a per-phase
basis [1,6,7,27]. An important criterion for good energy saving and limited performance
penalty, is to limit the number of phases (in order to limit the training time at run time
of finding a good per-phase hardware setting) and to achieve good phase predictability
(in order to limit the number of phase mispredictions which may be costly in terms of
missed energy saving opportunities and/or performance penalty).

4 Experimental Setup

We use all the SPEC CPU2000 integer and floating-point benchmarks, use reference in-
puts for all benchmarks and run all benchmarks to completion. We use the SimpleScalar
Tool Set [2] for collecting BBVs on an interval basis.



Phase Complexity Surfaces: Characterizing Time-Varying Program Behavior 327

5 Program Phase Characterization

Due to space constraints, it is impossible to present phase complexity curves for all
benchmarks. Instead we present and discuss typical example phase complexity surfaces
that we observed during our study. Example surfaces are shown in Figures 1 and 2:
Figure 1 shows phase count and predictability surfaces for gcc-scilab, gzip-
program, eon-kajiya and equake, and Figure 2 shows surfaces for bzip2-
graphic, lucas, fma3d and gap. As mentioned before, a phase count surface
shows the (logarithm of the) number of phases on the Z-axis versus the clustering
threshold (which is a measure for intra-phase variability) and the interval size (which
is a measure of time granularity) on the X and Y axes; the phase predictability sur-
face shows phase predictability on the Z-axis versus clustering threshold and interval
size. The θ clustering threshold is varied from 0.05 up to 0.5 in 0.05 increments — the
smaller the threshold, the smaller the intra-phase variability; interval size is varied from
1M up to 1G — note the labels are shown as log2 of the interval size.

There are basically two types of phase count surfaces. The first type shows a decreas-
ing number of program phases at larger time granularities. This is illustrated in Figure 1.
The second type shows an increasing number of program phases at larger time granu-
larities and a decreasing number of program phases at a yet larger time granularity, see
Figure 2.

The first type of phase count surface can be explained by the observation that phase
behavior at a small time granularity gets averaged out at a larger time granularity. As
a result, more and more portions of the program execution start looking similar which
is reflected in a decreasing number of program phases. The second type of phase count
surface appears for programs with obvious phase behavior, however, this obvious phase
behavior seems to be difficult to capture over a range of time scales. This can occur
in case the period of the inherent phase behavior is not a multiple of a given time
granularity. For the purpose of illustration, consider the following example of a phase ID
sequence: ‘AAABBAAABBAAABB...’ with ‘A’ and ‘B’ being phase IDs. The number
of phases at time granularity 1 equals 2, namely ‘A’ and ‘B’. At the time granularity
of 2, there are 3 phases observed, namely ‘AA’, ‘AB’ (or ‘BA’) and ‘BB’. At the time
granularity of 4, there are only 2 phases observed: ‘AAAB’ and ‘AABB’. In some sense
this could be viewed of as a consequence of our choice for fixed-length intervals in our
phase-level characterization, however, we observe the large number of phases across a
range of time granularities. This seems to suggest that this phase behavior has a fairly
long period, and that variable-length intervals (which are tied to some notion of time
granularity as well) may not completely solve the problem.

It is also interesting to observe that for both types of phase count surfaces, phase pre-
dictability can be high or low. For example, the predictability is low for gcc-scilab,
gzip-program and bzip2-graphic and is very high for equake, fma3d and
lucas. For some benchmarks, phase predictability correlates inversely with the num-
ber of phases, see for example gzip-program: for a given clustering threshold,
the higher the number of phases, the lower the predictability. For other benchmarks
on the other hand, the opposite seems to be true: for a given clustering threshold,
phase predictability decreases with a decreasing number of phases, see for example
gcc-scilab.
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Fig. 1. Phase count surfaces (left column) and phase predictability surfaces (right column) for
gcc-scilab, gzip-program, eon-kajiya and equake



Phase Complexity Surfaces: Characterizing Time-Varying Program Behavior 329

bzip2-graphic :: phase count bzip2-graphic :: phase predictability

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30

Interval Size (log2)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Clustering
Threshold

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0)01gol(

sesa hpfo
re b

mu
N

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30

Interval Size (log2)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Clustering
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

ytilibatcider
P

esa h
P

lucas :: phase count lucas :: phase predictability

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30

Interval Size (log2)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Clustering
Threshold

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0)01gol(

ses ahpfo
r eb

mu
N

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30

Interval Size (log2)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Clustering
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0
ytilibatci de r

P
es ah

P

fma3d :: phase count fma3d :: phase predictability

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30

Interval Size (log2)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Clustering
Threshold

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0)01gol(

sesahpfo
reb

mu
N

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30

Interval Size (log2)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Clustering
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

ytilibat cider
P

e sa h
P

gap :: phase count gap :: phase predictability

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30

Interval Size (log2)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Clustering
Threshold

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0)01gol(

sesahpfo
reb

mu
N

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30

Interval Size (log2)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Clustering
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

ytilibatc ider
P

es ah
P

Fig. 2. Phase count surfaces (left column) and phase predictability surfaces (right column) for
bzip2-graphic, lucas, fma3d and gap
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Fig. 3. Phase complexity surfaces for gcc-scilab (top left), eon-kajiya (top right),
gzip-program (bottom left) and gap (bottom right)

Figure 3 shows the phase complexity surfaces for gcc-scilab, eon-kajiya,
gzip-program and gap which combine the phase count and predictability surfaces.
These examples clearly show two extreme phase behaviors. The phase behavior for
eon-kajiya is much less complex than for gcc-scilab: eon-kajiya has fewer
program phases and shows very good phase predictability; gcc-scilab on the other
hand, exhibits a large number of phases and in addition, phase predictability is very
poor.

6 Classifying Benchmarks

Having characterized all the benchmarks in terms of their phase behavior using phase
complexity surfaces, we can now categorize benchmarks according to their phase be-
havior. To this end we employ the methodology proposed by Eeckhout et al. [10] to find
similarities across benchmarks.

6.1 Methodology

As input to this methodology we provide a number of characteristics per benchmark:
we provide phase predictability and (the logarithm of) the number of phases at three
threshold values (θ = 5%, θ = 10% and θ = 25%) at four time scales (1M, 8M, 64M
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and 512M) — there are 24 characteristics in total. Intuitively speaking, we sample the
phase complexity surface. This yields a data matrix with the rows being the benchmark-
input pairs and the columns being the 24 phase characteristics.

This data matrix serves as input to Principal Components Analysis (PCA) [15] —
the goal of PCA is (i) to remove corand a given clustering threshold, relation from the
data set and (ii) to reduce the dimensionality. PCA computes new dimensions, called
principal components, which are linear combinations of the original phase characteris-
tics. In other words, PCA tranforms the p = 24 phase characteristics X1, X2, . . . , Xp

into p principal components Z1, Z2, . . . , Zp with Zi =
∑p

j=1 aijXj . This transforma-
tion has the properties (i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥ V ar[Zp] — this means Z1
contains the most information and Zp the least; and (ii) Cov[Zi, Zj ] = 0, ∀i �= j —
this means there is no information overlap between the principal components. Some
principal components have a higher variance than others. By removing the principal
components with the lowest variance from the analysis, we reduce the dimensionality
of the data set while controlling the amount of information that is thrown away. On our
data set we retain 3 principal components that collectively explain 87.4% of the total
variance in the original data set. Note that prior to PCA we normalize the data matrix
(the columns have a zero mean and variance of one) to put all characteristics on a com-
mon scale; also after PCA, we normalize the principal components to give equal weight
to the underlying mechanisms extracted by PCA.

We now have a reduced data matrix, i.e., we are left with three principal component
values for all benchmark-input pairs. This reduced data set now serves as input to clus-
ter analysis which groups benchmark-input pairs that exhibit similar phase behavior.
We use linkage clustering here because it allows to visualize the clustering through a
dendrogram. Linkage clustering starts with a matrix of distances between the bench-
marks. As a starting point for the algorithm, each benchmark is considered as a group.
In each iteration of the algorithm, groups that are closest to each other are merged and
groups are gradually merged until we are left with a single group. This can be repre-
sented in a so called dendrogram, which graphically represents the linkage distance for
each group merge at each iteration of the algorithm. Having obtained a dendrogram,
it is up to the user to decide how many clusters to take. This decision can be made
based on the linkage distance. Indeed, small linkage distances imply strong clustering
while large linkage distances imply weak clustering. There exist several methods for
calculating the distance between clusters. In this paper we use the weighted pair-group
average method which computes the distance between two clusters as the weighted av-
erage distance between all pairs of program-input points in the two different clusters.
The weighting of the average is done by considering the cluster size, i.e., the number of
program-input points in the cluster.

6.2 Results

Figure 4 shows the dendrogram obtained from clustering the benchmarks based on
their phase behavior. Classifying the benchmarks using this dendrogram with a criti-
cal threshold of 2.5, results in four major clusters representing the most diverse phase
behaviors across the SPEC CPU2000 benchmarks, see also Table 1. Note that in case a
more fine-grained distinction needs to be made among the benchmarks in terms of their
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Fig. 4. Dendrogram visualizing the clustering

Table 1. Classifying benchmarks in terms of their phase behavior; cluster representatives are
shown in bold

ID benchmarks
1 gcc-200, gcc-scilab, gcc-expr, gcc-integrate, parser, mcf
2 eon-kajiya, eon-rush, mesa, twolf, sixtrack, wupwise, perl-make, vpr-place
3 crafty, vpr-route, eon-cook, gzip-program, gzip-source, gzip-graphic,

gzip-random,art, perl-diff, vortex
4 bzip2, gcc-166, gzip-log, perl-split, ammp, gap, lucas, apsi, galgel,

facerec, mgrid, applu, equake, fma3d, swim

phase behavior, the critical threshold should be made smaller; this will result in more
fine-grained types of phase behavior. We observe the following key phase characteris-
tics in each of the four major clusters:

– cluster 1 :: very poor phase predictability and a very large number of phases
– cluster 2 :: very small number of phases and very good phase predictability;
– cluster 3 :: a relatively poor predictability and a high number of phases at small

time granularities, in combination with relatively better predictability and relatively
fewer phases at large time granularities;

– cluster 4 :: a moderate number of phases across all time granularities, and mostly
good to excellent predictability.
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In summary, cluster 2 exhibits the simplest phase behavior. Clusters 3 and 4 show
moderately complex phase behaviors, with cluster 3 showing poorer phase predictabil-
ity at small time granularities. Cluster 1 represents the most complex phase behav-
iors observed across the SPEC CPU2000 benchmark suite. Referring back to Figure 3,
the phase complexity surfaces shown represent an example benchmark from each of
these groups: eon-kajiya as an example for the simple phase behavior in cluster 2;
gzip-program and gap as examples for the moderately complex phase behaviors in
clusters 3 and 4, respectively; and gcc-scilab as an example for the very complex
phase behavior in cluster 1.

7 Conclusion

Program phase behavior is a well-known program characteristic that is subject to many
optimizations both in software and hardware. In order to get a good understanding in a
program’s phase behavior, it is important to have a way of characterizing a program’s
time-varying behavior. This paper proposed phase complexity surfaces which character-
ize a program’s phase behavior in terms of its four key properties: time scale, number of
phases, phase predictability and intra- versus inter-phase predictability. Phase complex-
ity surfaces provide a good intuitive and unified view of a program’s phase behavior.
These complexity surfaces can be used to classify benchmarks in terms of their inherent
phase behavior.
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Abstract. Dynamic partitioning of shared caches has been proposed
to improve performance of traditional eviction policies in modern multi-
threaded architectures. All existing Dynamic Cache Partitioning (DCP)
algorithms work on the number of misses caused by each thread and
treat all misses equally. However, it has been shown that cache misses
cause different impact in performance depending on the distribution of
the Memory Level Parallelism (MLP) of the application L2 misses: clus-
tered misses share their miss penalty as they can be served in parallel,
while isolated misses have a greater impact as the memory latency is not
shared with other misses.

We take this fact into account and propose a new DCP algorithm that
considers misses differently depending on their influence in throughput.
Our proposal obtains improvements over traditional traditional eviction
policies up to 63.9% (10.6% on average) and it also outperforms previous
DCP proposals by up to 15.4% (4.1% on average) in a four-core architec-
ture. Finally, we give a practical implementation with a hardware cost
under 1% of the total L2 cache size.

1 Introduction

The limitation imposed by instruction-level parallelism (ILP) has motivated
the use of thread-level parallelism (TLP) as a common strategy for improv-
ing processor performance. TLP paradigms such as simultaneous multithreading
(SMT) [1, 2], chip multiprocessor (CMP) [3] and combinations of both offer the
opportunity to obtain higher throughputs. However, they also have to face the
challenge of sharing resources of the architecture. Simply avoiding any resource
control can lead to undesired situations where one thread is monopolizing all the
resources and harming the other threads. Some studies deal with the resource
sharing problem in SMTs at core level resources like issue queues, registers,
etc. [4]. In CMPs, resource sharing is focused on the cache hierarchy.

Some applications present low reuse of their data and pollute caches with
data streams, such as multimedia, communications or streaming applications,
or have many compulsory misses that cannot be solved by assigning more cache
space to the application. Traditional eviction policies such as Least Recently
Used (LRU), pseudo LRU or random are demand-driven, that is, they tend to
give more space to the application that has more accesses to the cache hierarchy.
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As a consequence, some threads can suffer a severe degradation in performance.
Previous work has tried to solve this problem by using static and dynamic parti-
tioning algorithms that monitor the L2 cache accesses and decide a partition for
a fixed amount of cycles in order to maximize throughput [5,6,7] or fairness [8].
Basically, these proposals predict the number of misses per application for each
possible cache partition. Then, they use the cache partition that leads to the
minimum number of misses for the next interval.

A common characteristic of these proposals is that they treat all L2 misses
equally. However, it has been shown that L2 misses affect performance differently
depending on how clustered they are. An isolated L2 miss has approximately
the same miss penalty than a cluster of L2 misses, as they can be served in
parallel if they all fit in the reorder buffer (ROB) [9]. In Figure 1 we can see this
behavior. We have represented an ideal IPC curve that is constant until an L2
miss occurs. After some cycles, commit stops. When the cache line comes from
main memory, commit ramps up to its steady state value. As a consequence, an
isolated L2 miss has a higher impact on performance than a miss in a burst of
misses as the memory latency is shared by all clustered misses.

(a) Isolated L2 miss (b) Clustered L2 misses

Fig. 1. Isolated and clustered L2 misses

Based on this fact, we propose a new DCP algorithm that gives a cost to each
L2 access according to its impact in final performance. We detect isolated and
clustered misses and assign a higher cost to isolated misses. Then, our algorithm
determines the partition that minimizes the total cost for all threads, which is
used in the next interval. Our results show that differentiating between clustered
and isolated L2 misses leads to cache partitions with higher performance than
previous proposals. The main contributions of this work are the following.

1) A runtime mechanism to dynamically partition shared L2 caches in a CMP
scenario that takes into account the MLP of each L2 access. We obtain improve-
ments over LRU up to 63.9% (10.6% on average) and over previous proposals
up to 15.4% (4.1% on average) in a four-core architecture.

2) We extend previous workloads classifications for CMP architectures with
more than two cores. Results can be better analyzed in every workload group.

3) We give a sampling technique that reduces the hardware cost in terms
of storage under 1% of the total L2 cache size with an average throughput
degradation of 0.76% (compared to the throughput obtained without sampling).

The rest of this paper is structured as follows. In Section 2 we introduce the
methods that have been previously proposed to decide L2 cache partitions and
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related work. Next, in Section 3 we explain our MLP-aware DCP algorithm. In
Section 4 we describe the experimetal environment and in Section 5 we discuss
simulation results. Finally, we conclude with Section 6.

2 Prior Work in Dynamic Cache Partitioning

Stack Distance Histogram. Mattson et al. introduce the concept of stack
distance to study the behavior of storage hierarchies [10]. Common eviction
policies such as LRU have the stack property. Thus, each set in a cache can be
seen as an LRU stack, where lines are sorted by their last access cycle. In that
way, the first line of the LRU stack is the Most Recently Used (MRU) line while
the last line is the LRU line. The position that a line has in the LRU stack
when it is accessed again is defined as the stack distance of the access. As an
example, we can see in Table 1(a) a stream of accesses to the same set with their
corresponding stack distances.

Table 1. Stack Distance Histogram

(a) Stream of accesses to a given cache set (b) SDH example
# Reference 1 2 3 4 5 6 7 8
Cache Line A B C C A D B D

Stack Distance - - - 1 3 - 4 2

Stack Distance 1 2 3 4 >4
# Accesses 60 20 10 5 5

For a K-way associative cache with LRU replacement algorithm, we need
K + 1 counters to build SDHs, denoted C1, C2, . . . , CK , C>K . On each cache
access, one of the counters is incremented. If it is a cache access to a line in
the ith position in the LRU stack of the set, Ci is incremented. If it is a cache
miss, the line is not found in the LRU stack and, as a result, we increment
the miss counter C>K . SDH can be obtained during execution by running the
thread alone in the system [5] or by adding some hardware counters that profile
this information [6, 7]. A characteristic of these histograms is that the number
of cache misses for a smaller cache with the same number of sets can be easily
computed. For example, for a K ′-way associative cache, where K ′ < K, the new
number of misses can be computed as misses = C>K +

∑K
i=K′+1 Ci.

As an example, in Table 1(b) we show a SDH for a set with 4 ways. Here, we
have 5 cache misses. However, if we reduce the number of ways to 2 (keeping the
number of sets constant), we will experience 20 misses (5 + 5 + 10).

Minimizing Total Misses. Using the SDHs of N applications, we can derive
the L2 cache partition that minimizes the total number of misses: this last num-
ber corresponds to the sum of the number of misses of each thread with the
assigned number of ways. The optimal partition in the last period of time is
a suitable candidate to become the future optimal partition. Partitions are de-
cided periodically after a fixed amount of cycles. In this scenario, partitions are
decided at a way granularity. This mechanism is used in order to minimize the
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total number of misses and try to maximize throughput. A first approach pro-
posed a static partitioning of the L2 cache using profiling information [5]. Then,
a dynamic approach estimated SDHs with information inside the cache [7]. Fi-
nally, Qureshi et al. presented a suitable and scalable circuit to measure SDHs
using sampling and obtained performance gains with just 0.2% extra space in
the L2 cache [6]. Throughout this paper, we will call this last policy MinMisses.

Fair Partitioning. In some situations, MinMisses can lead to unfair partitions
that assign nearly all the resources to one thread while harming the others [8].
For that reason, the authors propose considering fairness when deciding new
partitions. In that way, instead of minimizing the total number of misses, they
try to equalize the statistic Xi = missessharedi

missesalonei
of each thread i. They desire to

force all threads to have the same increase in percentage of misses. Partitions
are decided periodically using an iterative method. The thread with largest Xi

receives a way from the thread with smallest Xi until all threads have a similar
value of Xi. Throughout this paper, we will call this policy Fair.

Table 2. Different Partitioning Proposals

Paper Partitioning Objective Decision Algorithm Eviction Policy
[5] Static Minimize Misses Programmer − Column Caching
[7] Dynamic Minimize Misses Architecture Marginal Gain Augmented LRU
[6] Dynamic Maximize Utility Architecture Lookahead Augmented LRU
[8] Dynamic Fairness Architecture Equalize Xi

1 Augmented LRU
[11] Dyn./Static Configurable Operating System Configurable Augmented LRU

Other Related Work. Several papers propose different DCP algorithms in
a multithreaded scenario. In Table 2 we summarize these proposals with their
most significant characteristics. Rafique et al. propose to manage shared caches
with a hardware cache quota enforcement mechanism and an interface between
the architecture and the OS to let the latter decide quotas [11]. We have to note
that this mechanism is completely orthogonal to our proposal and, in fact, they
are compatible as we can let the OS decide quotas according to our scheme. Hsu
et al. evaluate different cache policies in a CMP scenario [12]. They show that
none of them is optimal among all benchmarks and that the best cache policy
varies depending on the performance metric being used. Thus, they propose to
use a thread-aware cache resource allocation. In fact, their results reinforce the
motivation of our paper: if we do not consider the impact of each L2 miss in
performance, we can decide suboptimal L2 partitions in terms of throughput.

Cache partitions at a way granularity can be implemented with column
caching [5], which uses a bit mask to mark reserved ways, or by augmenting
the LRU policy with counters that keep track of the number of lines in a set
belonging to a thread [7]. The evicted line will be the LRU line among its owned
lines or other threads lines depending on wether it reaches its quota or not.

In [13] a new eviction policy for private caches was proposed in single-threaded
architectures. This policy gives a weight to each L2 miss according to its MLP
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when the block is filled from memory. Eviction is decided using the LRU counters
and this weight. This idea was proposed for a different scenario as it focus on
single-threaded architectures.

3 MLP-Aware Dynamic Cache Partitioning

3.1 Algorithm Overview

The algorithm steps to decide dynamic cache partitions according to the MLP
of each L2 access can be seen in Algorithm 1. When we start executing different
applications in our CMP architecture, we have to decide an initial partition of
the L2 cache. As we have no prior knowledge of the applications, we choose to
assign Associativity

Number of Cores ways to each core.

Step 1: Establish an initial even partition for each core ;
Step 2: Run threads and collect data for the MLP-aware SDHs ;
Step 3: Decide new partition ;
Step 4: Update MLP-aware SDHs ;
Step 5: Go back to Step 2 ;

Algorithm 1. MLP-Aware dynamic cache partitioning algorithm

Afterwards, we begin a period of measuring the total MLP cost of each ap-
plication. We denote MLP-aware SDH the histogram of each thread containing
the total MLP cost for each possible partition. For small values of this period,
DCP algorithms react quicker to phase changes. However, the overhead of this
method also increases. Small performance variations are obtained for different
periods from 105 to 108 cycles, with a peak for a period of 5 million cycles.

When this interval ends, MLP-aware SDHs are analyzed and a new partition
is decided for the next interval. We assume that we will have a similar pattern
of L2 accesses in the next measuring period. Thus, the optimal partition for
the last period will be chosen for the following period. Evaluating all possible
combinations gives the optimal partition. However, this algorithm does not scale
adequately when associativity and the number of cores is raised. If we have a K-
way associativity L2 cache shared by N cores, the number of possible partitions
without considering the order is

(
N+K−1

K

)
. For example, for 8 cores and 16 ways,

we have 245157 possible combinations. Several heuristics have been proposed to
reduce the number of cycles required to decide the new partition [6,7], which can
be used in our situation. These proposals bound the decision period by 10000
cycles. This overhead is very low compared to 5 million cycles (under 0.2%).

Since characteristics of applications dynamically change, MLP-aware SDHs
should reflect these changes. However, we also wish to maintain some history of
the past MLP-aware SDHs to make new decisions. Thus, after a new partition
is decided, we multiply all the values of the MLP-aware SDHs times ρ ∈ [0, 1].
Large values of ρ have larger reaction times to phase changes, while small values
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of ρ quickly adapt to phase changes but tend to forget the behavior of the
application. Small performance variations are obtained for different values of ρ
ranging from 0 to 1, with a peak for ρ = 0.5. Furthermore, this value is very
convenient as we can use a shifter to update histograms. Next, a new period of
measuring MLP-aware SDHs begins. The key contribution of this paper is the
method to obtain MLP-aware SDHs that we explain in the following Subsection.

3.2 MLP-Aware Stack Distance Histogram

As previously stated, MinMisses assumes that all L2 accesses are equally im-
portant in terms of performance. However, this is not always true. Cache misses
affect differently the performance of applications, even inside the same applica-
tion. As was said in [9], an isolated L2 data miss has a penalty cost that can be
approximated by the average memory latency. In the case of a burst of L2 data
misses that fit in the ROB, the penalty cost is shared among misses as L2 misses
can be served in parallel. In case of L2 instruction misses, they are serialized as
fetch stops. Thus, L2 instruction misses have a constant miss penalty and MLP.

We want to assign a cost to each L2 access according to its effect on perfor-
mance. In [13] a similar idea was used to modify LRU eviction policy for single
core and single threaded architectures. In our situation, we have a CMP scenario
where the shared L2 cache has a number of reserved ways for each core. At the
end of a measuring period, we can decide to continue with the same partition
or change it. If we decide to modify the partition, a core i that had wi reserved
ways will receive w′

i �= wi. If wi < w′
i, the thread receives more ways and, as a

consequence, some misses in the old configuration will become hits. Conversely,
if wi > w′

i, the thread receives less ways and some hits in the old configuration
will become misses. Thus, we want to have an estimation of the performance ef-
fects when misses are converted into hits and vice versa. Throughout this paper,
we will call this impact on performance MLP cost. All accesses are treated as if
they were in the correct path until the branch prediction is checked. All misses
on the wrong path are not considered as accesses in flight.

MLP cost of L2 misses. If we force an L2 configuration that assigns exactly
w′

i = di ways to thread i with w′
i > wi, some of the L2 misses of this thread will

(a) MSHR (b) MSHR fields

Fig. 2. Miss Status Holding Register
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become hits, while other will remain misses, depending on their stack distance.
In order to track the stack distance and MLP cost of each L2 miss, we have
modified the L2 Miss Status Holding Registers (MSHR) [14]. This structure is
similar to an L2 miss buffer and is used to hold information about any load
that has missed in the L2 cache. The modified L2 MSHR has one extra field
that contains the MLP cost of the miss as can be seen in Figure 2(b). It is also
necessary to store the stack distance of each access in the MSHR. In Figure 2(a)
we show the MSHR in the cache hierarchy.

When the L2 cache is accessed and an L2 miss is determined, we assign an
MSHR entry to the miss and wait until the data comes from Main Memory. We
initialize the MLP cost field to zero when the entry is assigned. We store the
access stack distance together with the identificator of the owner core. Every
cycle, we obtain N , the number of L2 accesses with stack distance greater or
equal to di. We have a hardware counter that tracks this number for each possible
number of di, which means a total of Associativity counters. If we have N L2
misses that are being served in parallel, the miss penalty is shared. Thus, we
assign an equal share of 1

N to each miss. The value of the MLP cost is updated
until the data comes from Main Memory and fills the L2. At this moment we
can free the MSHR entry.

MLP cost of L2 hits. Next, we want to estimate the MLP cost of an L2 hit
with stack distance di when it becomes a miss. If we forced an L2 configuration
that assigned exactly w′

i = di ways to the thread i with w′
i < wi, some of the L2

hits of this thread would become misses, while L2 misses would remain as misses.
The hits that would become misses are the ones with stack distance greater or
equal to di. Thus, we count the total number of accesses with stack distance
greater or equal to di (including L2 hits and misses) to estimate the length of
the cluster of L2 misses in this configuration.

Deciding the moment to free the entry used by an L2 hit is more complex than
in the case of the MSHR. As it was said in [9], in a balanced architecture, L2 data
misses can be served in parallel if they all fit in the ROB. Equivalently, we say
that L2 data misses can be served in parallel if they are at ROB distance smaller
than the ROB size. Thus, we should free the entry if the number of committed
instructions since the access has reached the ROB size or if the number of cycles
since the hit has reached the average latency to memory. The first condition is
clear as we have said that L2 misses can overlap if their ROB distance is less
than the ROB size. The second condition is also necessary as it can occur that no
L2 access is done for a period of time. To obtain the average latency to memory,
we add a specific hardware that counts and averages the number of cycles that
a given entry is in the MSHR.

We use new hardware to obtain the MLP cost of L2 hits. We denote this
hardware Hit Status Holding Registers (HSHR) as it is similar to the MSHR.
However, the HSHR is private for each core. In each entry, the HSHR needs an
identificator of the ROB entry of the access, the address accessed by the L2 hit,
the stack distance value and a field with the corresponding MLP cost as can be
seen in Figure 3(b). In Figure 3(a) we show the HSHR in the cache hierarchy.
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(a) HSHR (b) HSHR fields

Fig. 3. Hit Status Holding Register

When the L2 cache is accessed and an L2 hit is determined, we assign an
HSHR entry to the L2 hit. We init the fields of the entry as in the case of the
MSHR. We have a stack distance di and we want to update the MLP cost field
in every cycle. With this objective, we need to know the number of active entries
with stack distance greater or equal to di in the HSHR, which can be tracked
with one hardware counter per core. We also need a ROB entry identificator for
each L2 access. Every cycle, we obtain N , the number of L2 accesses with stack
distance greater or equal to di as in the L2 MSHR case. We have a hardware
counter that tracks this number for each possible number of di, which means a
total of Associativity counters.

In order to avoid array conflicts, we need as many entries in the HSHR as
possible L2 accesses in flight. This number is equal to the L1 MSHR size. In our
scenario, we have 32 L1 MSHR entries, which means a maximum of 32 in flight
L2 accesses per core. However, we have checked that we have enough with 24
entries to ensure that we have an available slot 95% of the time in an architecture
with a ROB of 256 entries. If there are no available slots, we simply assign the
minimum weight to the L2 access as there are many L2 accesses in flight.

Quantification of MLP cost. Dealing with values of MLP cost between 0
and the memory latency (or even greater) can represent a significant hardware
cost. Instead, we decide to quantify this MLP cost with an integer value between
0 and 7 as was done in [13]. For a memory latency of 300 cycles, we can see in
Table 3 how to quantify the MLP cost. We have splitted the interval [0; 300]
with 7 intervals of equal length.

Finally, when we have to update the corresponding MLP-aware SDH, we add
the quantified value of MLP cost. Thus, isolated L2 misses will have a weight

Table 3. MLP cost quantification

MLP cost Quantification MLP cost Quantification
From 0 to 42 cycles 0 From 171 to 213 cycles 4
From 43 to 85 cycles 1 From 214 to 246 cycles 5
From 86 to 128 cycles 2 From 247 to 300 cycles 6
From 129 to 170 cycles 3 300 or more cycles 7
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of 7, while two overlapped L2 misses will have a weight of 3 in the MLP-aware
SDH. In contrast, MinMisses always adds one to its histograms.

3.3 Obtaining Stack Distance Histograms

Normally, L2 caches have two separate parts that store data and address tags to
know if the access is a hit. Basically, our prediction mechanism needs to track
every L2 access and store a separated copy of the L2 tags information in an
Auxiliary Tag Directory (ATD), together with the LRU counters [6]. We need
an ATD for each core that keeps track of the L2 accesses for any possible cache
configuration. Independently of the number of ways assigned to each core, we
store the tags and LRU counters of the last K accesses of the thread, where K
is the L2 associativity. As we have explained in Section 2, an access with stack
distance di corresponds to a cache miss in any configuration that assigns less
than di ways to the thread. Thus, with this ATD we can determine whether an
L2 access would be a miss or a hit in all possible cache configurations.

3.4 Putting All Together

In Figure 4 we can see a sketch of the hardware implementation of our proposal.
When we have an L2 access, the ATD is used to determine its stack distance di.
Depending on whether it is a miss or a hit, either the MSHR or the HSHR is
used to compute the MLP cost of the access. Using the quantification process we
obtain the final MLP cost. This number estimates how performance is affected
when the applications has exactly w′

i = di assigned ways. If w′
i > wi, we are

estimating the performance benefit of converting this L2 miss into a hit. In case
w′

i < wi, we are estimating the performance degradation of converting this L2
hit into a miss. Finally, using the stack distance, the MLP cost and the core
identifier, we can update the corresponding MLP-aware SDH.

Fig. 4. Hardware implementation
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We have used two different partitionig algorithms. The first one, that we
denote MLP-DCP (standing for MLP-aware Dynamic Cache Partitioning), de-
cides the optimal partition according to the MLP cost of each way. We de-
fine the total MLP cost of a thread i that uses wi ways as TMLP (i, wi) =
MLP SDHi,>K +

∑K
j=wi

MLP SDHi,j . We denote the total MLP cost of all
accesses of thread i with stack distance j as MLP SDHi,j . Thus, we have to
minimize the expression

∑N
i=1 TMLP (i, wi), where

∑N
i=1 wi = Associativity.

The second one consists in assigning a weight to each total MLP cost using
the IPC of the application in core i, IPCi. In this situation, we are giving priority
to threads with higher IPC. This point will give better results in throughput at
the cost of being less fair. IPCi is measured at runtime with a hardware counter
per core. We denote this proposal MLPIPC-DCP, which consists in minimizing
the expression

∑N
i=1 IPCi · TMLP (i, wi), where

∑N
i=1 wi = Associativity.

4 Experimental Environment

We target this study to the case of a CMP with two and four cores with their
respective own data and instruction L1 caches and a unified L2 cache shared
among threads as in previous studies [8, 6, 7]. Each core is single-threaded and
fetches up to 8 instructions each cycle. It has 6 integer (I), 3 floating point (FP),
and 4 load/store functional units and 32-entry I, load/store, and FP instruction
queues. Each thread has a 256-entry ROB and 256 physical registers. We use a
two-level cache hierarchy with 64B lines with separate 16KB, 4-way associative
data and instruction caches, and a unified L2 cache that is shared among all
cores. We have used two different L2 caches, one of size 1MB and 16-way asso-
ciativity, and the second one of size 2MB and 32-way associativity. Latency from
L1 to L2 is 15 cycles, and from L2 to memory 300 cycles. We use a 32B width
bus to access L2 and a multibanked L2 of 16 banks with 3 cycles of access time.

We extended the SMTSim simulator [2] to make it CMP. We collected traces
of the most representative 300 million instruction segment of each program, fol-
lowing the SimPoint methodology [15]. We use the FAME simulation method-
ology [16] with a Maximum Allowable IPC Variance of 5%. This evaluation
methodology measures the performance of multithreaded processors by reexe-
cuting all threads in a multithreaded workload until all of them are fairly rep-
resented in the final IPC taken from the workload. As performance metrics we
have used the IPC throughput, which corresponds to the sum of individual IPCs.

5 Evaluation Results

5.1 Workload Classification

In [17] two metrics are used to model the performance of a partitioning algorithm
like MinMisses for pairings of benchmarks in the SPEC CPU 2000 benchmark
suite. Here, we extend this classification for architectures with more cores.
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(a) IPC as we vary the number of as-
signed ways of a 1MB 16-way L2 cache

(b) Average miss penalty of an L2
miss with a 1MB 16-way L2 cache

Fig. 5. Benchmark classification

Metric 1. The wP%(B) metric measures the number of ways needed by a bench-
mark B to obtain at least a given percentage P% of its maximum IPC (when it
uses all L2 ways).

The intuition behind this metric is to classify benchmarks depending on their
cache utilization. Using P = 90% we can classify benchmarks into three groups:
Low utility (L), Small working set or saturated utility (S) and High utility (H). L
benchmarks have 1 ≤ w90% ≤ K

8 where K is the L2 associativity. L benchmarks
are not affected by L2 cache space because nearly all L2 accesses are misses. S
benchmarks have K

8 < w90% ≤ K
2 and just need some ways to have maximum

throughput as they fit in the L2 cache. Finally, H benchmarks have w90% > K
2

and always improve IPC as the number of ways given to them is increased. Clear
representatives of these three groups are applu (L), gzip (S) and ammp (H) in
Figure 5(a). In Table 4 we give w90% for all SPEC CPU 2000 benchmarks.

Table 4. Benchmark characterization

Bench w90% APTC IPC Bench w90% APTC IPC Bench w90% APTC IPC
ammp 14 23.63 1.27 applu 1 16.83 1.03 apsi 10 21.14 2.17
art 10 46.04 0.52 bzip2 1 1.18 2.62 crafty 4 7.66 1.71
eon 3 7.09 2.31 equake 1 18.6 0.27 facerec 11 10.96 1.16
fma3d 9 15.1 0.11 galgel 15 18.9 1.14 gap 1 2.68 0.96
gcc 3 6.97 1.64 gzip 4 21.5 2.20 lucas 1 7.60 0.35
mcf 1 9.12 0.06 mesa 2 3.98 3.04 mgrid 11 9.52 0.71
parser 11 9.09 0.89 perl 5 3.82 2.68 sixtrack 1 1.34 2.02
swim 1 28.0 0.40 twolf 15 12.0 0.81 vortex 7 9.65 1.35
vpr 14 11.9 0.97 wupw 1 5.99 1.32

The average miss penalty of an L2 miss for the whole SPEC CPU 2000 bench-
mark suite is shown in Figure 5(b). We note that this average miss penalty varies
a lot, even inside each group of benchmarks, ranging from 30 to 294 cycles. This
Figure reinforces the main motivation of the paper, as it proves that the clus-
tering level of L2 misses changes for different applications.
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Metric 2. The wLRU (thi) metric measures the number of ways given by LRU
to each thread thi in a workload composed of N threads. This can be done
simulating all benchmarks alone and using the frequency of L2 accesses for each
thread [18]. We denote the number of L2 Accesses in a Period of one Thousand
Cycles for thread i as APTCi. In Table 4 we list these values for each benchmark.

wLRU (thi) =
APTCi∑N

j=1 APTCj

· Associativity

Next, we use these two metrics to extend previous classifications [17] for work-
loads with more than two benchmarks.

Case 1. When w90%(thi) ≤ wLRU (thi) for all threads. In this situation LRU
attains 90% of each benchmark performance. Thus, it is intuitive that in this
situation there is very little room for improvement.

Case 2. When there exists two threads A and B such that w90%(thA) >
wLRU (thA) and w90%(thB) < wLRU (thB). In this situation, LRU is harming
the performance of thread A, because it gives more ways than necessary to
thread B. Thus, in this situation LRU is assigning some shared resources to a
thread that does not need them, while the other thread could benefit from these
resources.

Case 3. Finally, the third case is obtained when w90%(thi) > wLRU (thi) for
all threads. In this situation, our L2 cache configuration is not big enough to
assure that all benchmarks will have at least a 90% of their peak performance.
In [17] it was observed that pairings belonging to this group showed worse results
when the value of |w90%(th1) − w90%(th2)| grows. In this case, we have a thread
that requires much less L2 cache space than the other to attain 90% of its peak
IPC. LRU treats threads equally and manages to satisfy the less demanding
thread necessities. In case of MinMisses, it assumes that all misses are equally
important for throughput and tends to give more space to the thread with higher
L2 cache necessity, while harming the less demanding thread. This is a problem
due to MinMisses algorithm. We will show in next Subsections that MLP-aware
partitioning policies are available to overcome this situation.

Table 5. Workloads belonging to each case for two different shared L2 caches

1MB 16-way 2MB 32-way
#cores

2
4
6

Case 1 Case 2 Case 3
155 (48%) 135 (41%) 35 (11%)
624 (4%) 12785 (86%) 1541 (10%)

306 (0.1%) 219790 (95%) 10134 (5%)

Case 1 Case 2 Case 3
159 (49%) 146 (45%) 20 (6.2%)
286 (1.9%) 12914 (86%) 1750 (12%)
57 (0.02%) 212384 (92%) 17789 (7.7%)

In Table 5 we show the total number of workloads that belong to each case
for different configurations. We have generated all possible combinations without
repeating benchmarks. The order of benchmarks is not important. In the case
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of a 1MB 16-way L2, we note that Case 2 becomes the dominant case as the
number of cores increases. The same trend is observed for L2 caches with larger
associativity. In Table 5 we can also see the total number of workloads that
belong to each case as the number of cores increases for a 32-way 2MB L2 cache.
Note that with different L2 cache configurations, the value of w90% and APTCi

will change for each benchmark. An important conclusion from Table 5 is that
as we increase the number of cores, there are more combinations that belong to
the second case, which is the one with more improvement possibilities.

To evaluate our proposals, we randomly generate 16 workloads belonging to
each group for three different configurations. We denote these configurations 2C
(2 cores and 1MB 16-way L2), 4C-1 (4 cores and 1MB 16-way L2) and 4C-2
(4 cores and 2MB 32-way L2). We have also used a 2MB 32-way L2 cache as
future CMP architectures will continue scaling L2 size and associativity. For
example, the IBM Power5 [19] has a 10-way 1.875MB L2 cache and the Niagara
2 has a 16-way 4MB L2. Average improvements do consider the distribution of
workloads among the three groups. We denote this mean weighted mean, as we
assign a weight to the speed up of each case depending on the distribution of
workloads from Table 5. For example, for the 2C configuration, we compute the
weighted mean improvement as 0.48 · x1 + 0.41 · x2 + 0.11 · x3, where xi is the
average improvement in Case i.

5.2 Performance Results

Throughput. The first experiment consists in comparing throughput for differ-
ent DCP algorithms, using LRU policy as the baseline. We simulate MinMisses
and our two proposals with the 48 workloads that were selected in the pre-
vious Subsection. We can see in Figure 6(a) the average speed up over LRU
for these mechanisms. MLPIPC-DCP systematically obtains the best average
results, nearly doubling the performance benefits of MinMisses over LRU in
the four-core configurations. In configuration 4C-1, MLPIPC-DCP outperforms
MinMisses by 4.1%. MLP-DCP always improves MinMisses but obtains worse
results than MLPIPC-DCP.

All algorithms have similar results in Case 1. This is intuitive as in this sit-
uation there is little room for improvement. In Case 2, MinMisses obtains a

(a) Throughput speed up over LRU (b) Fairness speed up over LRU

Fig. 6. Average performance speed ups over LRU
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relevant improvement over LRU in configuration 2C. MLP-DCP and MLPIPC-
DCP achieve an extra 2.5% and 5% improvement, respectively. In the other
configurations, MLP-DCP and MLPIPC-DCP still outperform MinMisses by a
2.1% and 3.6%. In Case 3, MinMisses presents larger performance degradation
as the asymmetry between the necessities of the two cores increases. As a con-
sequence, it has worse average throughput than LRU. Assigning an appropiate
weight to each L2 access gives the possibility to obtain better results than LRU
using MLP-DCP and MLPIPC-DCP.

Fairness. We have used the harmonic mean of relative IPCs [20] to measure
fairness. The relative IPC is computed as IPCshared

IPCalone
. In Figure 6(b) we show the

average speed up over LRU of the harmonic mean of relative IPCs. Fair stands
for the policy explained in Section 2. We can see that in all situations, MLP-DCP
always improves over both MinMisses and LRU (except in Case 3 for two cores).
It even obtains better results than Fair in configurations 2C and 4C-1. MLPIPC-
DCP is a variant of the MLP-DCP algorithm optimized for throughput. As a
consequence, it obtains worse results in fairness than MLP-DCP.

5.3 Hardware Cost

We have used the hardware implementation of Figure 4 to estimate the hardware
cost of our proposal. In this Subsection, we focus our attention on the configu-
ration 2C. We suppose a 40-bit physical address space. Each entry in the ATD
needs 29 bits (1 valid bit + 24-bit tag + 4-bit for LRU counter). Each set has
16 ways, so we have an overhead of 58 Bytes (B) for each set. As we have 1024
sets, we have a total cost of 58KB per core.

The hardware cost that corresponds to the extra fields of each entry in the L2
MSHR is 5 bits for the stack distance and 2B for the MLP cost. As we have 32
entries, we have a total of 84B. HSHR entries need 1 valid bit, 8 bits to identify
the ROB entry, 34 bits for the address, 5 bits for the stack distance and 2B for
the MLP cost. In total we need 64 bits per entry. As we have 24 entries in each
HSHR, we have a total of 192B per core. Finally, we need 17 counters of 4B for
each MLP-Aware SDH, which supposes a total of 68B per core. In addition to
the storage bits, we also need an adder for incrementing MLP-aware SDHs and
a shifter to halve the hit counters after each partitioning interval.

Fig. 7. Throughput and hardware cost depending on ds in a two-core CMP
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Sampled ATD. The main contribution to hardware cost corresponds to the
ATD. Instead of monitoring every cache set, we can decide to track accesses
from a reduced number of sets. This idea was also used in [6] with MinMisses
in a CMP environment. Here, we use it in a different situation, say to estimate
MLP-aware SDHs with a sampled number of sets. We define a sampling distance
ds that gives the distance between tracked sets. For example, if ds = 1, we are
tracking all the sets. If ds = 2, we track half of the sets, and so on. Sampling
reduces the size of the ATD at the expense of less accuracy in MLP-aware
SDHs predictions as some accesses are not tracked, Figure 7 shows throughput
degradation in a 2 cores scenario as the ds increases. This curve is measured
on the left y-axis. We also show the storage overhead in percentage of the total
L2 cache size, measured on the right y-axis. Thanks to the sampling technique,
storage overhead drastically decreases. Thus, with a sampling distance of 16
we obtain average throughput degradations of 0.76% and a storage overhead of
0.77% of the L2 cache size. We think that this is an interesting point of design.

6 Conclusions

In this paper we propose a new DCP algorithm that gives a cost to each L2 access
according to its impact in final performance: isolated misses receive higher costs
than clustered misses. Next, our algorithm decides the L2 cache partition that
minimizes the total cost for all running threads. Furthermore, we have classified
workloads for multiple cores into three groups and shown that the dominant
situation is precisely the one that offers room for improvement.

We shown that our proposal reaches high throughput for two- and four-core
architectures. In all evaluated configurations, MLP-DCP and MLPIPC-DCP
systematically outperform both LRU and MinMisses, reaching a speed up of
63.9% (10.6% on average) and 15.4% (4.1% on average) over LRU and Min-
Misses, respectively. Finally, we have used a sampling technique to propose a
practical implementation with a hardware cost in terms of storage under 1% of
the total L2 cache size with nearly no performance degradation.
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Compiler Techniques for Reducing Data Cache
Miss Rate on a Multithreaded Architecture
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Abstract. High performance embedded architectures will in some cases
combine simple caches and multithreading, two techniques that increase
energy efficiency and performance at the same time. However, that com-
bination can produce high and unpredictable cache miss rates, even when
the compiler optimizes the data layout of each program for the cache.

This paper examines data-cache aware compilation for multithreaded
architectures. Data-cache aware compilation finds a layout for data ob-
jects which minimizes inter-object conflict misses. This research extends
and adapts prior cache-conscious data layout optimizations to the much
more difficult environment of multithreaded architectures. Solutions are
presented for two computing scenarios: (1) the more general case where
any application can be scheduled along with other applications, and (2)
the case where the co-scheduled working set is more precisely known.

1 Introduction

High performance embedded architectures seek to accelerate performance in the
most energy-efficient and complexity-effective manner. Two technologies that
improve performance and energy efficiency at the same time are caches and
multithreading. However, when used in combination, these techniques can be in
conflict, as unpredictable interactions between threads can result in high con-
flict miss rates. It has been shown that in large and highly associative caches,
these interactions are not large; however, embedded architectures are more likely
to combine multithreading with smaller, simpler caches. The techniques in this
paper allow the architecture to maintain these simpler caches, solving the prob-
lem in software via the compiler, rather than necessitating more complex and
power-hungry caches.

Cache-conscious Data Placement (CCDP) [1] is a technique which finds an
intelligent layout for the data objects of an application, so that at runtime objects
which are accessed in an interleaved pattern are not mapped to the same cache
blocks. On a processor core with a single execution context, this technique has
been shown to significantly reduce the cache conflict miss rate and improve
performance over a wide set of benchmarks.

However, CCDP loses much of its benefit in a multithreaded environment,
such as simultaneous multithreading (SMT) [2,3]. In an SMT processor multiple
threads run concurrently in separate hardware contexts. This architecture has
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Fig. 1. Percentage of data cache misses that are due to conflict. The cache is 32 KB
direct-mapped, shared by two contexts in an SMT processor.

been shown to be a much more energy efficient approach to accelerate processor
performance than other traditional performance optimizations [4,5], and thus
is a strong candidate for inclusion in high performance embedded architectures.
In a simultaneous multithreading processor with shared caches, however, objects
from different threads compete for the same cache lines – resulting in potentially
expensive inter-thread conflict misses. These conflicts cannot be analyzed in
the same manner that was applied successfully by prior work on intra-thread
conflicts. This is because inter-thread conflicts are not deterministic.

Figure 1, which gives the percentage of conflict misses for various pairs of
co-scheduled threads, shows two important trends. First, inter-thread conflict
misses are just as prevalent as intra-thread conflicts (26% vs. 21% of all misses).
Second, the infusion of these new conflict misses significantly increases the overall
importance of conflict misses, relative to other types of misses.

This phenomenon extends beyond multithreaded processors. Multi-core archi-
tectures may share on-chip L2 caches, or possibly even L1 caches [6,7]. However,
in this work we focus in particular on multithreaded architectures, because they
interact and share caches at the lowest level.

In this paper, we develop new techniques that allow the ideas of CCDP to
be extended to multithreaded architectures, and be effective. We consider the
following compilation scenarios:

(1) First we solve the most general case, where we cannot assume we know
which applications will be co-scheduled. This may occur, even in an embedded
processor, if we have a set of applications that can run in various combinations.

(2) In more specialized embedded applications, we will be able to more pre-
cisely exploit specific knowledge about the applications and how they will be run.
We may have a priori knowledge about application sets to be co-scheduled in the
multithreaded processor. In these situations, it should be feasible to co-compile,
or at least cooperatively compile, these concurrently running applications.

This paper makes the following contributions: (1) We show that traditional
multithreading-oblivious cache-conscious data placement is not effective in a
multithreading architecture. In some cases, it does more harm than good. (2)
We propose two extensions to CCDP that can identify and eliminate most of
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the inter-thread conflict misses for each of the above mentioned scenarios. We
have seen as much as a 26% average reduction in misses after our placement
optimization. (3) We show that even for applications with many objects and
interleavings, temporal relationship graphs of reasonable size can be maintained
without sacrificing performance and quality of placement. (4) We present several
new mechanisms that improve the performance and realizability of cache con-
scious data placement (whether multithreaded or not). These include object and
edge filtering for the temporal relationship graph. (5) We show that these algo-
rithms work across different cache configurations, even for set-associative caches.
Previous CCDP algorithms have targeted direct-mapped caches – we show that
they do not translate easily to set-associative caches. We present a new mecha-
nism that eliminates set-associative conflict misses much more effectively.

2 Related Work

Direct-mapped caches, although faster, more power-efficient, and simpler than
set-associative caches, are prone to conflict misses. Consequently, much research
has been directed toward reducing conflicts in a direct-mapped cache. Several
papers [8,9,10] explore unconventional line-placement policies to reduce conflict
misses. Lynch, et al. [11] demonstrate that careful virtual to physical translation
(page-coloring) can reduce the number of cache misses in a physically-indexed
cache. Rivera and Tseng [12] predict cache conflicts in a large linear data struc-
ture by computing expected conflict distances, then use intra- and inter-variable
padding to eliminate those conflicts. The Split Cache [13] is a technique to
virtually partition the cache through special hardware instructions, which the
compiler can exploit to put potentially conflicting data structures in isolated
virtual partitions.

In a simultaneous multithreading architecture [2,3],various threads share exe-
cution and memory system resources on a fine-grained basis. Sharing of the L1
cache by multiple threads usually increases inter-thread conflict misses [2,14,15].
Until now, few studies have been conducted which try to improve cache perfor-
mance in an SMT processor, particularly without significant hardware support.
It has been shown [16] that partitioning the cache into per-thread local regions
and a common global region can avoid some inter-thread conflict misses. Tra-
ditional code transformation techniques (tiling, copying and block data layout)
have been applied, along with a dynamic conflict detection mechanism to achieve
significant performance improvement [17]; however, these transformations yield
good results only for regular loop structures. Lopez, et al. [18] also look at the
interaction between caches and simultaneous multithreading in embedded archi-
tectures. However, their solutions also require dynamically reconfigurable caches
to adapt to the behavior of the co-scheduled threads.

This research builds on the profile-driven data placement proposed by Calder,
et al. [1]. The goal of this technique is to model temporal relationships between
data objects through profiling. The temporal relationships are captured in a
Temporal Relationship Graph (TRG), where each node represents an object and
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edges represent the degree of temporal conflict between objects. Hence, if objects
P and Q are connected by a heavily weighted edge in the TRG, then placing
them in overlapping cache blocks is likely to cause many conflict misses.

We have extended this technique to SMT processors and set associative caches.
Also, we have introduced the concept of object and edge trimming - which sig-
nificantly reduces the time and space complexity of our placement algorithm.
Kumar and Tullsen [19] describe techniques, some similar to this paper, to min-
imize instruction cache conflicts on an SMT processor. However, the dynamic
nature of the sizes, access patterns, and lifetimes of memory objects makes the
data cache problem significantly more complex.

3 Simulation Environment and Benchmarks

We run our simulations on SMTSIM [20], which simulates an SMT processor.
The detailed configuration of the simulated processor is given in Table 1. For
most portions of the paper, we assume the processor has a 32 KB, direct-mapped
data cache with 64 byte blocks. We also model the effects on set associative
caches in Section 6, but we focus on a direct-mapped cache both because the
effects of inter-thread conflicts is more severe, and because direct mapped caches
continue to be an attractive design point for many embedded designs. We assume
the address mappings resulting from the compiler and dynamic allocator are
preserved in the cache. This would be the case if the system did not use virtual
to physical translation, if the cache is virtually indexed, or if the operating system
uses page coloring to ensure that our cache mappings are preserved.

The fetch unit in our simulator fetches from the available execution contexts
based on the ICOUNT fetch policy [3] and the flush policy from [21], a perfor-
mance optimization that reduces the overall cost of any individual miss.

It is important to note that a multithreaded processor tends to operate in
one of two regions, in regards to its sensitivity to cache misses. If it is latency-
limited (no part of the hierarchy becomes saturated, and the memory access
time is dominated by device latencies), sensitivity to the cache miss rate is low,
because of the latency tolerance of multithreaded architectures. However, if the
processor is operating in bandwidth-limited mode (some part of the subsystem
is saturated, and the memory access time is dominated by queuing delays), the
multithreaded system then becomes very sensitive to changes in the miss rate.
For the most part, we choose to model a system that has plenty of memory and
cache bandwidth, and never enters the bandwidth-limited regions. This results
in smaller observed performance gains for our placement optimizations, but we
still see significant improvements. However, real processors will likely reach that
saturation point with certain applications, and the expected gains from our
techniques would be much greater in those cases.

Table 2 alphabetically lists the 20 SPEC2000 benchmarks that we have used.
The SPEC benchmarks represent a more complex set of applications than repre-
sented in some of the embedded benchmark suites, with more dynamic memory
usage; however, these characteristics do exist in real embedded applications. For
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Table 1. SMT Processor Details

Parameter Value
Fetch Bandwidth 2 Threads, 4 Instructions Total
Functional Units 4 Integer, 4 Load/Store, 3 FP
Instruction Queues 32 entry Integer, 32 entry FP
Instruction Cache 32 KB, 2-way set associative
Data Cache 32 KB, direct-mapped
L2 Cache 512 KB, 4-way set associative
L3 Cache 1024 KB, 4-way set associative
Miss Penalty L1 15 cycles, L2 80 cycles, L3 500 cycles
Pipeline Depth 9 stages

Table 2. Simulated Benchmarks

ID Benchmark Type Hit Rate(%) ID Benchmark Type Hit Rate(%)
1 ammp FP 84.19 11 gzip INT 95.41
2 applu FP 83.07 12 mesa FP 98.32
3 apsi FP 96.54 13 mgrid FP 88.56
4 art FP 71.31 14 perl INT 89.89
5 bzip2 INT 94.66 15 sixtrack FP 92.38
6 crafty INT 94.48 16 swim FP 75.13
7 eon INT 97.42 17 twolf INT 88.63
8 facerec FP 81.52 18 vortex INT 95.74
9 fma3d FP 94.54 19 vpr INT 86.21
10 galgel FP 83.01 20 wupwise INT 51.29

our purposes, these benchmarks represent a more challenging environment to
apply our techniques. In our experiments, we generated a k-threaded workload
by picking each benchmark along with its (k − 1) successors (modulo the size of
the table) as they appear in Table 2. Henceforth we shall refer to a workload by
the ID of its first benchmark. For example, workload 10 (at two threads) would
be the combination {galgel gzip}. Our experiments report results from a simula-
tion window of two hundred million instructions; however, the benchmarks are
fast-forwarded by ten billion dynamic instructions beforehand. Table 2 also lists
the L1 hit rate of each application when they are run independently. All profiles
are generated running the SPEC train inputs, and simulation and measurement
with the ref inputs. We also profile and optimize for a larger portion of execution
than we simulate.

This type of study represents a methodological challenge in accurately report-
ing performance results. In multithreaded experimentation, every run consists
of a potentially different mix of instructions from each thread, making relative
IPC a questionable metric. In this paper we use weighted speedup [21] to report
our results. Weighted speedup much more accurately reflects system-level per-
formance improvements, and makes it more difficult to create artificial speedups
by changing the bias of the processor toward certain threads.
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4 Independent Data Placement

In the next two sections, we consider two different execution scenarios. In this
section, we solve the more general and difficult scenario, where the compiler ac-
tually does not know which applications will be scheduled together dynamically,
or the set of co-scheduled threads changes frequently; however, we assume all
applications will have been generated by our compiler. In this execution sce-
nario, then, co-scheduling will be largely unpredictable and dynamic. However,
we can still compile programs in such a way that conflict misses are minimized.
Since all programs would essentially be compiled in the same way, some support
from the operating system, runtime system, or the hardware is required to allow
each co-scheduled program to be mapped onto the cache differently.

We have modified CCDP techniques to create an intentionally unbalanced uti-
lization of the cache,mapping objects to a hot portion anda cold portion.This does
not necessarily imply more intra-thread conflict misses. For example, the two most
heavily accessed objects in the program can be mapped to the same cache index
without a loss in performance, if they are not typically accessed in an interleaved
pattern – this is the point of using the temporal relationship graph of interleavings
to do the mapping, rather than just using reference counts. CCDP would typically
create a more balanced distribution of accesses across the cache; however, it can
be tuned to do just the opposite. This is a similar approach to that used in [19] for
procedure placement, but applied here to the placement of data objects.

However, before we present the details of the object placement algorithm, we
first describe the assumptions about hardware or OS support, how data objects
are identified and analyzed, and some options that make the CCDP algorithms
faster and more realizable.

4.1 Support from Operating System or Hardware

Our independent placement technique (henceforth referred to as IND) reposi-
tions the objects so that they have a top-heavy access pattern, i.e. most of the
memory accesses are limited to the top portion of the cache. Now let us consider
an SMT processor with two hardware contexts, and a shared L1 cache (whose
size is at least twice the virtual-memory page size). If the architecture uses a
virtual cache, the processor can xor the high bits of the cache index with a hard-
ware context ID (e.g., one bit for 2 threads, 2 bits for 4 threads), which will then
map the hot portions of the address space to different regions of the cache. In a
physically indexed cache, we don’t even need that hardware support. When the
operating system loads two different applications in the processor, it ensures (by
page coloring or otherwise) that heavily accessed virtual pages from the threads
do not collide in the physically indexed cache.

For example, let us assume an architecture with a 32 KB data cache, 4 KB
memory pages, and two threads. The OS or runtime allocates physical pages to
virtual pages such that the three least significant bits of the page number are
preserved for thread zero, and for thread one the same is done but with the third
bit reversed. Thus, the mapping assumed by the compilers is preserved, but with



Compiler Techniques for Reducing Data Cache Miss Rate 359

each thread’s “hot” area mapped to a different half of the cache. This is simply
an application of page coloring, which is not an unusual OS function.

4.2 Analysis of Data Objects

To facilitate data layout, we consider the address space of an application as
partitioned into several objects. An object is loosely defined as a contiguous
region in the (virtual) address space that can be relocated with little help from
the compiler and/or the runtime system. The compiler typically creates several
objects in the code and data segment, the starting location and size of which
can be found by scanning the symbol table. A section of memory allocated by a
malloc call can be considered to be a single dynamic object, since it can easily
be relocated using an instrumented front-end to malloc. However, since the
same invocation of malloc can return different addresses in different runs of an
application – we need some extra information to identify the dynamic objects
(that is, to associate a profiled object with the same object at runtime). Similar
to [1], we use an additional tag (henceforth referred to as HeapTag) to identify
the dynamic objects. HeapTag is generated by xor-folding the top four addresses
of the return stack and the call-site of malloc. We do not attempt to reorder
stack objects. Instead the stack is treated as a single object.

After the objects have been identified, their reference count and lifetime in-
formation over the simulation window can be retrieved by instrumenting the
application binary with a tool such as ATOM [22]. Also obtainable are the tem-
poral relationships between the objects, which can be captured using a temporal
relationship graph (henceforth referred to as TRGSelect graph). The TRGSelect
graph contains nodes that represent objects (or portions of objects) and edges
between nodes contain a weight which represents how many times the two ob-
jects were interleaved in the actual profiled execution.

Temporal relationships are collected at a finer granularity than full objects –
mainly because some of the objects are much larger than others, and usually only
a small portion of a bigger object has temporal association with the smaller one.
It is more logical to partition the objects into fixed size chunks, and then record
the temporal relationship between chunks. Though all the chunks belonging to
an object are placed sequentially in their original order, having finer-grained
temporal information helps us to make more informed decisions when two con-
flicting objects must be put in an overlapping cache region. We have set the
chunk size equal to the block size of the targeted cache. This provides the best
performance, as we now track conflicts at the exact same granularity that they
occur in the cache.

4.3 Object and Edge Filtering

Profiling a typical SPEC2000 benchmark, even for a partial profile, involves
tens of thousands of objects, and generates hundreds of millions of temporal
relationship edges between objects. To make this analysis manageable, we must
reduce both the number of nodes (the number of objects) as well as the number
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of edges (temporal relationships between objects) in the TRGSelect graph. We
classify objects as unimportant if their reference count is zero, or the sum of the
weights of incident edges is below a threshold.

If a HeapTag assigned to a heap object is non-unique, we mark all but the
most frequently accessed object having that HeapTag as unimportant. Multiple
objects usually have the same HeapTag when dynamic memory is being allocated
in a loop and they usually have similar temporal relationship with other objects.

A similar problem exists for building the TRGSelect graph. Profiling creates
a TRGSelect graph with a very large number of edges. Since it is desirable to
store the entire TRGSelect graph in memory, keeping all these edges would not
be practical. Fortunately, we have noted that in a typical profile more than 90%
of all the edges are light-weight, having an edge weight less than one tenth of
the heavier edges. We use the following epoch-based heuristic to periodically
trim off the potentially light-weight edges, limiting the total number of edges to
a preset maximum value. In a given epoch, edges with weight below a particular
threshold are marked as potentially light-weight. In the next epoch, if the weight
of an edge marked as potentially light-weight does not increase significantly from
the previous epoch, it is deleted from the TRGSelect graph. The threshold is
liberal when the total number of edges is low, but made more aggressive when
the number of edges nears our preset limit on the number of edges.

In this algorithm, then, we prune the edges dynamically during profiling,
and prune the objects after profiling, but before the placement phase. We find
pruning has little impact on the quality of our results.

4.4 Placement Algorithm

For independent data placement, the cache blocks are partitioned into native
and foreign sets. If we know the application is going to be executed on an SMT
processor with k contexts, the top 1

k cache blocks are marked as native, and
other cache blocks are marked as foreign. For any valid placement of an object
in a native block, we define an associated cost. That cost is the sum of the
costs for each chunk placed in the contiguous cache blocks. The cost of a chunk
is the edge weight (interleaving factor) between that chunk and all chunks of
other objects already placed in that cache block. If the cache block is marked as
foreign, a bias is added to the overall cost to force the algorithm to only place an
object or part of an object in the foreign section if there is no good placement
in the native. The bias for an object is set to be λ times the maximum edge
weight between a chunk belonging to this object and any other chunk in the
TRGSelect graph. Varying this bias allows a tradeoff between combined cache
performance, and uncompromised cache performance when running alone. Our
basic placement heuristic is to order the objects and then place them each, in
that order, into the cache where they incur minimal cost. Since some objects are
fundamentally different in nature and size from others, we came up with a set of
specialized placement strategies, each targetting one particular type of object.
Specifically, we will separately consider constant objects, small global objects,
important global objects, and heap objects.
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An object which resides in the code segment is defined as a constant object.
Constant objects are placed in their default location (altering the text segment
might have adverse effects on the instruction cache). However when other objects
are placed in cache, their temporal relationship with the constant objects is taken
into consideration.

Small global objects are handled differently than larger objects, allowing us
to transform potential conflicts into cache prefetch opportunities. A statically
allocated object which resides in the data segment is defined as a global object.
Furthermore, a global object is classified as small if its size is less than three-
fourths of the block size. As in [1], we try to cluster the small global objects
that have heavily-weighted edges in the TRG and place them in the same cache
block. Accessing any of the objects in the cluster will prefetch the others, avoiding
costly cache misses in the near future. Small global objects are clustered greedily,
starting with the pair of objects with the highest edge weight between them.

After a cluster has been formed, nodes representing individual objects in the
cluster are coalesced into a single node (in the TRGSelect graph). The cluster
will be assigned a starting location along with other non-small objects in the
next phase of the placement algorithm.

Next, we place the global objects. Our greedy placement algorithm is sensitive
to the order in which the objects are placed. By experimentation, we have found
the following approach to be effective. We build a TRGPlace graph from the
TRGSelect graph, where chunks of individual objects are merged together into
a single node (edge weights are adjusted accordingly). Next, the most heavily
weighted edge is taken from the TRGPlace graph. The two objects connected by
that edge are placed in the cache, and marked as placed; however, recall that
the actual placement still uses the TRGSelect graph, which tracks accesses to
the individual chunks.

In each subsequent iteration of the algorithm, an unplaced object is chosen
which maximizes the sum of TRGPlace edge-weights between itself and the ob-
jects that have been already placed. In case of a tie, the object with a higher
reference count is given preference.

Unimportant global objects are placed so as to fill holes in the address space
created by the allocation of the important global objects.

Heap objects also reside in the data segment, however they are dynamically
created and destroyed at runtime using malloc and free calls. Specifying a
placement for heap objects is more difficult because a profiled heap object might
not be created, or might have different memory requirements in a later execution
of the same application with different input. Thus, we determine the placement
assuming the object is the same size, but only indicate to our custom malloc
the location of the first block of the desired mapping. The object gets placed
there, even if the size differs from the profiled run.

During execution, our customized malloc first computes the HeapTag for the
requested heap object. If the HeapTag matches any of the recorded HeapTags
for which a customized allocation should be performed, malloc returns a suit-
ably aligned address from the available memory. When the newly created heap
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Fig. 2. Data Cache miss rate after Independent Placement (IND)
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Fig. 3. Weighted Speedup after Independent Placement (IND)

object is brought in the cache, it occupies the blocks specified by the placement
algorithm.

4.5 Independent Placement Results

The effects of data placement by IND on miss rate and weighted speedup are
shown in Figure 2 and Figure 3 respectively. The Baseline series shows data cache
miss rate without any type of placement optimization. CCDP shows the miss
rate if traditional CCDP is performed on each of the applications. Since CCDP
ignores inter-thread conflicts, for four workloads CCDP actually increases the
miss rate over Baseline. LG2ACC shows the miss rate if L1 data cache is imple-
mented as a Double access local-global split cache [16]. Split caches are designed
to reduce conflicts in a multithreaded workload, though in our experiments the
split cache was not overly effective. The final three series (IND-30, IND-40, IND-
50) show the effect of co-ordinated data placement with λ (the placement bias)
set to 0.30, 0.40 and 0.50 respectively. The figure shows that no single value of
λ is universally better than others, though all of them yield improvement over
traditional CCDP. For future work, it may be that setting λ individually for
each application, based on number and size of objects, for example, will yield
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even better results. A careful comparison of Figure 2 and Figure 1 shows that
the effectiveness of co-ordinated data placement is heavily correlated with the
fraction of cache misses that are caused by conflicts. On workloads like {crafty
eon} (workload 6) or {gzip mesa} (11), more than half of the cache misses are
caused by conflicts, and IND-30 reduces the miss rate by 54.0% and 46.8%, re-
spectively. On the other hand, only 6% of the cache misses in workload {wupwise
ammp} (20) are caused by conflicts, and IND-30 achieves only a 1% gain.

On average, IND reduced overall miss rate by 19%, reduced total conflict
misses by more than a factor of two, and achieved a 6.6% speedup. We also ran
experiments with limited bandwidth to the L2 cache (where at most one pending
L1 miss can be serviced in every two cycles), and in that case the performance
tracked the miss rate gains somewhat more closely, achieving an average weighted
speedup gain of 13.5%.

IND slightly increases intra-thread cache conflict (we still are applying cache-
conscious layout, but the bias allows for some inefficiency from a single-thread
standpoint). For example, the average miss rate of the applications, when run
alone with no co-scheduled jobs increases from 12.9% to 14.3%, with λ set to 0.4.
However, this result is heavily impacted by one application, ammp for which this
mapping technique was largely ineffective due to the large number of heavily-
accessed objects. If the algorithm was smart enough to just leave ammp alone,
the average single-thread miss rate would be 13.8%. Unless we expect single-
thread execution to be the common case, the much more significant impact on
multithreaded miss rates makes this a good tradeoff.

5 Co-ordinated Data Placement

In many embedded environments, applications that are going to be co-scheduled
are known in advance. In such a scenario, it might be more beneficial to co-
compile those applications and lay out their data objects in unison. This ap-
proach provides more accurate information about the temporal interleavings of
objects to the layout engine.

Our coordinated placement algorithm (henceforth referred to as CORD) is
similar in many ways to IND. However, in CORD the cache is not split into
native and foreign blocks, and thus there is no concept of biasing. In CORD, the
TRGSelect graph from all the applications are merged together and important
objects from all the applications are assigned a placement in a single pass.

5.1 Merging of TRGSelect Graphs

The TRGSelect graph generated by executing the instrumented binary of an
application captures the temporal relationships between the objects of that ap-
plication. However, when two applications are co-scheduled on an SMT proces-
sor, objects from different execution contexts will vie for the same cache blocks
in the shared cache. We have modeled inter-thread conflicts by merging the
TRGSelect graphs of the individual applications. It is important to note that
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we profile each application separately to generate two graphs, which are then
merged probabilistically. While we may have the ability to profile the two threads
running together and their interactions, there is typically little reason to believe
the same interactions would occur in another run. The exception would be if the
two threads communicate at a very fine granularity, in which case it would be
better to consider them a single parallel application.

Assigning temporal relationship weights between two objects from different
applications requires modeling interactions that are much less deterministic than
interactions between objects in the same thread. We thus use a probabilistic
model to quantify expected interactions between objects in different threads.

Two simplifying assumptions have been made for estimating the inter-thread
temporal edge weights, which make it easier to quantify the expected interactions
between objects in separate threads. (1) The relative execution speeds of the
two threads is known a priori. Relative execution speed of co-scheduled threads
typically remains fairly constant unless one of the threads undergoes a phase
change – which can be discovered via profiling. (2) Within its lifetime, an object
is accessed in a regular pattern, i.e. if the lifetime of an object o is k cycles, and
the total reference count of o is n, then o is accessed once every k

n cycles. Few
objects have very skewed access pattern so this assumption gives a reasonable
estimate of the number of references made to an object in a particular interval.

We use these assumptions to estimate the interleavings between two objects
(in different threads). From the first assumption, along with the known lifetimes
of objects, we can calculate the likelihood that two objects have overlapping
lifetimes (and the expected duration). From the second assumption, we can
estimate the number of references made to those objects during the overlap.
The number of interleavings cannot be more than twice the lesser of the two
(estimated) reference counts. We apply a scaling factor to translate this worst-
case estimate of the interleavings during an interval, into an expected number of
interleavings. This scaling factor is determined experimentally. To understand
the point of the scaling factor, if the two objects are being accessed at an equal
rate by the two threads, but we always observe a run of two accesses from one
thread before the other thread issues an access, the scaling factor would be 0.50.

In our experiments we have found it sufficient to only put temporal edges
between important objects of each application, which eliminates edge explosion.

5.2 Coordinated Placement Results

The miss-rate impact and weighted speedup achieved by CORD is shown in
Figures 4 and 5. The three series CORD-60, CORD-70 and CORD-80 represents
the result of independent data placement with scaling factor set to 0.6, 0.7 and
0.8 respectively. The scaling factor represents the degree of interleaving we expect
between memory accesses from different threads accessing the same cache set.

In most of the workloads, the speedup is somewhat more than that obtained
from independent placement, thus confirming our hypothesis that having ac-
cess to more information about conflicting objects leads to better placement
decisions. On the average CORD reduced miss rate by 26% and achieved 8.8%
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speedup. However, if one of these optimized applications is run alone (i.e. without
its counterpart application) we do sacrifice single-thread performance slightly,
but the effect is much less than the gain when co-scheduled. The amount of the
single-thread loss depends somewhat on the scaling factor. The average Baseline
miss rate was 12.9%. With coordinated placement, and a scaling factor of 0.7,
the average single-thread miss rate goes up to 13.1%, but when the scaling factor
is 0.8, the miss rate actually becomes 12.7%.

6 Exploring other Processor and Cache Configurations

We have demonstrated the effectiveness of our placement techniques for a single
hardware configuration. We also did extensive sensitivity analysis, to understand
how these techniques work as aspects of the architecture change. We lack space
to show those results in detail, but include a brief summary here. We examined
alternate cache sizes and organizations, different latencies, and different levels
of threading.

Cache associativity is the most interesting alternative, in large part because
proposed CCDP algorithms do not accommodate associative caches. The naive
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approach would model a set-associative cache as a direct-mapped cache with the
same number of sets. It would over-state conflicts, but would hopefully produce
a good mapping. In fact, we found that it did not.

Any mapping function that used our current TRGs would be an approxima-
tion, because we only capture 2-way conflicts. Profiling and creating a hyper-
graph to capture more complex conflicts would be computationally prohibitive.
However, we found the following algorithm to work well, using our existing TRG.
We have adjusted our default placement algorithm such that for a k-way set as-
sociative cache, an object incurs placement cost only if is placed in a set where
at least k objects have already been placed. This new policy tends to fill up
every set in the associative cache to its maximum capacity before potentially
conflicting objects are put in the set that already contains more than k objects.

The actual results for set-associative caches are indicative of the low incidence
of conflict misses for these workloads. However, we do see that our techniques
are effective – we eliminate the vast majority of remaining conflict misses. For a
16 KB, 2-way cache, we reduce total miss rate from 15.8% to 13.8%.

Our placement techniques were designed to adapt easily to processors hav-
ing more than two execution contexts. For co-ordinated data placement of k
applications, k TRGSelect graphs must be merged together before placement.
Independent data placement requires the cache be partitioned into k regions,
where each region contains the hot objects from one of the applications. For a
4-thread processor, IND-30 and CORD-60 reduced miss rates by 14% and 22%
on the average; however, the actual speedups were smaller, due to SMT’s ability
to tolerate cache latencies. However, there are other important advantages of
reducing L1 miss rate, like lower power dissipation.

7 Conclusion

As we seek higher performance embedded processors, we will increasingly see
architectures that feature caches and multiple thread contexts (either through
multithreading or multiple cores), and thus we shall see greater incidence of
threads competing for cache space. The more effectively each application is tuned
to use the caches, the more interference we see between competing threads.

This paper demonstrates that it is possible to compile threads to share the
data cache, to each thread’s advantage. We specifically address two scenarios.
Our first technique does not assume any prior knowledge of the threads which
might be co-scheduled together, and hence is applicable to all general-purpose
computing environments. Our second technique shows that when we do have
more specific knowlege about which applications will run together, that knowl-
edge can be exploited to enhance the quality of object placement even further.
Our techniques demonstrated 26% improvement in miss rate and 9% improve-
ment in performance, for a variety of workloads constructed from the SPEC2000
suite. It is also shown that our placement techniques scale effectively across
different hardware configurations, including set-associative caches.
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Abstract. This paper proposed a systematic approach to optimize J2ME KVM 
running directly on NAND flash memories (XIP). The refined KVM generated 
cache misses 96% less than the original version did. The approach appended a 
post processor to the compiler. The post processor relocates and rewrites basic 
blocks within the VM interpreter using a unique mathematical model. This 
approach analyzed not only static control flow graph but also the pattern of 
bytecode instruction streams, since we found the input sequence drives the 
program flow of the VM interpreter. The proposed mathematical model is used 
to express the execution flows of Java instructions of real applications. 
Furthermore, we concluded the mathematical model is a kind of graph partition 
problem, and this finding helped the relocation process to move program blocks 
to proper NAND flash pages. The refinement approach dramatically improved 
the locality of the virtual machine thus reduced cache miss rates. Our technique 
can help J2ME-enabled devices to run faster and extend longer battery life. The 
approach also brings potential for designers to integrate the XIP function into 
System-on-Chip thanks to lower demand for cache memory.  

Keywords: NAND flash memory, code placement, cache miss, Java virtual 
machine, interpreter, power-saving, memory management, embedded system. 

1   Introduction 

Java platform extensively exist in all kinds of embedded and mobile devices. It is no 
doubt that Java™ Platform, Micro Edition (Java ME) [1] has become a de facto 
standard platform of smart phone. The Java virtual machine (it is KVM in Java ME) 
is a key component that affects performance and power consumptions. 

NAND flash memories come with serial bus interface. It does not allow random 
access and the CPU must read out the whole page at a time. This property leads a 
processor hardly to execute programs stored in NAND flash memories in “execute-in-
place” (XIP) fashion. However, NAND flash memories are very fast in writing 
operation, and the most important of all, the technology has advantages in offering 
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higher capacity than NOR flash technology does. As the applications of embedded 
devices become large and complicated, more mainstream devices adopt NAND flash 
memories to replace NOR flash memories. 

In this paper, we tried to offer one of the answers to this question: can we speed up 
a Java-enabled device using NAND flash memories to store programs? We begin to 
construct our approach from considering the page-oriented access property of NAND 
flash memories; because the penalty of each access to the NAND flash memory is 
higher than accessing RAM. By the unique nature of the KVM interpreter, we found a 
special way to discover the locality of the KVM while execution, and implemented a 
post-processing program running behind the compiler code generation stage. The 
post-processing program refined machine code placement of KVM based on the graph 
that formalizes both Java instruction trace patterns and code size constraints. The 
tuned KVM dramatically reduced page accesses to NAND flash memories, thus saves 
more battery power as well. 

2   Related Works 

Park et al., in [2], proposed a hardware module connecting with NAND flash to allow 
direct code execution from NAND flash memory. In this approach, program codes 
stored in NAND flash pages will be loaded into RAM cache on-demand instead of 
move entire contents into RAM. Their work is a universal hardware-based solution 
without considering application-specific characteristics. 

Samsung Electronics offers a commercial product called “OneNAND” [3] based 
on the same concept of above approach. It is a single chip with a standard NOR flash 
interface. Actually, it contains a NAND flash memory array for data storage. The 
vendor was intent to provide a cost-effective alternative to NOR flash memories used 
in existing designs. The internal structure of OneNAND comprises a NAND flash 
memory, control logics, hardware ECC, and 5KB buffer RAM. The 5KB buffer RAM 
is comprised of three buffers: 1KB for boot RAM, and a pair of 2KB buffers used for 
bi-directional data buffers. Our approach is suitable for systems using this type of 
flash memories. 

Park et al., in [4], proposed yet another pure software approach to archive execute-
in-place by using a customized compiler that inserts NAND flash reading operations 
into program code at proper place. Their compiler determines insertion points by sum 
up sizes of basic blocks along the calling tree. Although special hardware is no longer 
required, but it still need a tailor-made compiler in contrast to their previous work [2]. 

Conventional studies of refining code placement to minimize cache misses can 
apply to NAND flash cache system. Parameswaran et al., in [5], used the bin-packing 
approach. It reorders the program codes by examining the execution frequency of 
basic blocks. Code segments with higher execution frequency are placed next to each 
other within the cache. Janapsatya et al., in [6], proposed a pure software heuristic 
approach to reduce number of cache misses by relocating program sections in the 
main memory. Their approach was to analyze program flow graph, identify and pack 
basic blocks within the same loop. They have also created relations between cache 
miss and energy consumption. Although their approach can identify loops within a 
program, it is hard to break the interpreter of a virtual machine into individual loops 
because all the loops share the same starting point. 
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There are researches in improving program locality and optimizing code placement 
for either cache or virtual memory environment. Pettis [7] proposed a systematic 
approach using dynamic call graph to position procedures. They tried to wind up two 
procedures as close as possible if one of the procedure calls another frequently. The 
first step of Pettis’ approach uses the profiling information to create weighted call 
graph. The second step iteratively merges vertexes connected by heaviest weight 
edges. The process repeats until the whole graph composed of one or more individual 
vertex without edges. 

3   Background 

3.1   XIP with NAND Flash 

NOR flash memories are popular as code memories because of the XIP feature. To 
use a NAND flash memory as an alternative to a NOR flash memory, there were 
several approaches. Because NAND flash memory interface cannot connect to the 
CPU host bus, there has to be a memory interface controller helps to move data from 
NAND flash memories to RAM. 

 

Fig. 1. Access NAND flash thru shadow RAM 

In system-level view, Figure 1 shows a straightforward design which uses RAM as 
the shadow copy of NAND flash. The system treats NAND flash memories as 
secondary storage devices [8]. There should be a boot loader or RTOS resided in 
ROM or NOR flash memory. It copies program codes from NAND flash to RAM, 
then the processor executes program codes in RAM [9]. This approach offers best 
execution speed because the processor operates with RAM. The downside of this 
approach is it needs huge amount of RAM to mirror NAND flash. In embedded 
devices, RAM is a precious resource. For example, the Sony Ericsson T610 mobile 
phone [10] reserved 256KB RAM for Java heap. In contrast to using 256MB for 
mirroring NAND flash memory, all designers should agree that they would prefer to 
retain those RAM for Java applets rather than for mirroring. The second pitfall is the 
implementation takes longer time to boot because the system must copy contents to 
RAM prior to execution. 
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Figure 2 shows a demand paging approach uses limited amount of RAM as the 
cache of NAND flash. The “romized” program codes stay in NAND flash memory, 
and a MMU loads only portions of program codes which is about to be executed from 
NAND into the cache. The major advantage of this approach is it consumes less 
RAM. Several kilobytes of RAM are enough to cache a NAND flash memory. Using 
less RAM means it is easier to integrate CPU, MMU and cache into a single chip (The 
shadowed part in Figure 2). The startup latency is shorter since CPU is ready to run 
soon after the first NAND flash page is loaded into the cache. The material cost is 
relative lower than the previous approach. The realization of the MMU might be 
either hardware or software approach, which is not covered in this paper. 

However, performance is the major drawback of this approach. The penalty of each 
cache miss is high, because loading contents from a NAND flash page is nearly 200 
times slower than doing the same operation with RAM. Therefore reducing cache 
misses becomes a critical issue to such configuration. 

 

Fig. 2. Using cache unit to access NAND flash 

3.2   KVM Internals 

Source Level. In respect of functionality, the KVM can be broken down into several 
parts: startup, class files loading and constant pool resolving, interpreter, garbage 
collection, and KVM cleanup. Lafond et al., in [11], have measured the energy 
consumptions of each part in the KVM. Their study showed that the interpreter 
consumed more than 50% of total energy. In our experiments running Embedded 
Caffeine Benchmark [12], the interpreter contributed 96% of total memory accesses. 
These evidences concluded that the interpreter is the performance bottleneck of the 
KVM, and they motivated us to focus on reducing the cache misses generated by the 
interpreter. 

Figure 3 shows the program structure of the interpreter. It is a loop encloses a large 
switch-case dispatcher. The loop fetches bytecode instructions from Java application, 
and each “case” sub-clause, say bytecode handler, deals with one bytecode 
instruction. The control flow graph of the interpreter, as illustrated in Figure 4, is a 
flat and shallow spanning tree. There are three major steps in the interpreter, 
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(1) Rescheduling and Fetching. In this step, KVM prepares the execution context, 
stack frame. Then it fetches a bytecode instruction from Java programs. 

(2) Dispatching and Execution. After reading a bytecode instruction from Java 
programs, the interpreter jumps to corresponding bytecode handlers through the big 
“switch…case…” statement. Each bytecode handler carries out the function of the 
corresponding bytecode instruction. 

(3) Branching. The branch bytecode instructions may bring the Java program flow 
away from original track. In this step, the interpreter resolves the target address and 
modifies the program counter. 

 
ReschedulePoint: 
RESCHEDULE 
opcode = FETCH_BYTECODE ( ProgramCounter ); 
switch ( opcode ) 
{ 
case ALOAD: /* do something */ 
  goto ReschedulePoint; 
 case IADD: /* do something */ 
  … 
 case IFEQ: /* do something */ 
  goto BranchPoint; 
  … 
} 
BranchPoint: 
 take care of program counter; 
 goto ReschedulePoint; 

Fig. 3. Pseudo code of KVM interpreter 

 

Fig. 4. Control flow graph of the interpreter 

Assembly Level. Our finding explained the program structure of the VM interpreter 
is peculiar by observing its source files. Analyzing the code layout in the compiled 
executables of the interpreter helped this study to construct a code placement strategy. 
The assembly code analysis in this study was restricted to ARM and gcc for the sake 
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of demonstration, but it is easy to apply our theory to other platforms and tools. 
Figure 5 illustrates the layout of the interpreter in assembly form (FastInterpret() in 
interp.c). The first trunk BytecodeFetching is the code block for rescheduling and 
fetching, it is exactly the first part in the original source code. The second trunk 
LookupTable is a large lookup table used in dispatching bytecode instructions. Each 
entry links to a bytecode handler. It is actually the translated result of the 
“switch…case…case” statement. 

 

Fig. 5. The organization of the interpreter in assembly aspect 

The third trunk BytecodeDispatch is the aggregation of more than a hundred 
bytecode handlers. Most bytecode handlers are self-contained which means a 
bytecode handler occupies a contiguous memory space in this trunk and it does not 
jump to program codes stored in other trunks. There are only a few exceptions which 
call functions stored in other trunks, such as “invokevirtual.” Besides, there are 
several constant symbol tables spread over this trunk. These tables are referenced by 
the program codes within the BytecodeDispatch trunk. 

The last trunk ExceptionHandling contains code fragments related with exception 
handling. Each trunk occupies a number of NAND flash pages. In fact, the total size 
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of BytecodeFetching and LookupTable is about 1200 bytes (compiled with arm-elf-
gcc-3.4.3), which is almost small enough to fit into two or three 512-bytes-page. 
Figure 8 showed the size distribution of bytecode handlers. The average size of a 
bytecode handler is 131 bytes, and there are 79 handlers smaller than 56 bytes. In the 
other words, a 512-bytes-page could gather 4 to 8 bytecode handlers. The intra-
handler execution flow dominates the number of cache misses generated by the 
interpreter. This is the reason that our approach tried to rearrange bytecode handlers 
within the BytecodeDispatch trunk. 

 

Fig. 6. Distribution of Bytecode Handler Size (compiled with gcc-3.4.3) 

4   Analyzing Control Flow 

4.1   Indirect Control Flow Graph 

Typical approaches derive the code placement of a program from its control flow 
graph (CFG). However, the CFG of a VM interpreter is a special case, its CFG is a 
flat spanning tree enclosed by a loop. All bytecode handlers are always sibling code 
blocks in the aspect of CFG regardless of executed Java applications. Therefore, the 
CFG does not provide information to distinguish the temporal order between each 
bytecode handler. If someone wants to improve the program locality by observing the 
dynamic execution order of program blocks, and CFG is apparently not a good tool to 
this end. Therefore, we proposed a concept called “Indirect Control Flow Graph” 
(ICFG); it uses the dynamic instruction sequence to construct the dual CFG of the 
interpreter. 

Consider a simplified virtual machine with 5 bytecode instructions: A, B, C, D,  
and E. Besides, take the following short alphabetic sequences as the input to the 
simplified virtual machine: 

A-B-A-B-C-D-E-C 

Each letter in the sequence represents a bytecode instruction. In Figure 7, the graph 
connected with the solid lines is the CFG of the simplified interpreter. Yet, this CFG 
cannot convey whether handler B will be called after handler A is executed. 
Therefore, we construct the ICFG by using the dashed directed lines to connect the 
bytecode handlers in the order of the input sequence. Actually, the Figure 8 expresses 
the ICFG in a readable way. 
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Fig. 7. The CFG of the simplified interpreter 

 

Fig. 8. An ICFG example. The number inside the circle represents the size of the handler. 

4.2   Tracing the Locality of the Interpreter 

Our study found that the Java applications that a KVM runs dominate the locality of 
the VM interrupter. Precisely speaking, the incoming Java instruction sequence 
dominates locality. The first step is to consider the bytecode sequences executed by 
KVM. Consider the previous sequences as an example. The order of accessed NAND 
flash pages is supposed to be: 

[BytecodeFetching]-[LookupTable]-[A]-[BytecodeFetching]-[LookupTable]-[B]-
[BytecodeFetching]-[LookupTable]-[A]… 

Obviously, NAND flash pages contained BytecodeFetching and LookupTable were 
much often to appear in the sequence than those contained BytecodeDispatch. As a 
result, pages belonging to BytecodeFetching and LookupTable are favorable to last in 
the cache. Pages holding bytecode handlers have to compete with each other to stay in 
the cache. Thus, we induced that the order of executed bytecode instructions is the 
key factor impacts cache misses. 

Consider an extreme case: In a system with three cache blocks, pages of 
BytecodeFetching and LookupTable occupied two cache blocks, and then there is only 
one free cache block for swapping pages containing bytecode handlers. If all the 
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bytecode handlers were located in distinct NAND flash pages, each bytecode 
instruction decoding operation would cause a cache miss. This is because the next-to-
execute bytecode handler is always located in an uncached NAND flash page. In the 
other word, the sample sequence caused at least eight cache misses. Nevertheless, if 
both the handlers of A and B are grouped to the same page, cache misses will decline 
to 5 times, and the page access trace becomes: 

fault-A-B-A-B-fault-C-fault-D-fault-E-fault-C 

If we expand the group (A, B) to include the handler of C, the cache miss count 
would even drop to four times, and the page access trace looks like the following one: 

fault-A-B-A-B-C-fault-D-fault-E-fault-C 

Therefore, an effective code layout method should partition all bytecode 
instructions into disjoined sets based on their execution relevance. Each NAND flash 
page contains one set of bytecode handlers. Partitioning the ICFG can reach this goal. 

Back to Figure 8, the directed edges represented the temporal order of the 
instruction sequence. The weight of an edge is the repetitious count that the bytecode 
instruction succeeded to the other in the instruction sequence. If we cut off edge (B, 
C), the ICFG is divided into two disjoined sets. That is, the bytecode handlers of A 
and B are placed in one page, and the bytecode handlers of C, D, and E are placed in 
the other. The page access trace became: 

fault-A-B-A-B-fault-C-D-E-C 

This placement would cause only two cache misses, which is 75% lower than the 
worst case! The next step is to transform the ICFG diagram to an undirected graph by 
merging opposite direction edges connected same vertices, and weight of the 
undirected edge is the sum of weights of those two directed edges. The consequence 
is actually a derivation of the classical MIN k-CUT problem. Formally speaking, 
given a graph G(V, E), it can be modeled as: 

 Vi – represent the i-th bytecode instruction. 
 Ei,j – the edge connect i-th and j-th bytecode instruction. 
 Fi,j – number of times that two bytecode instructions i and j executed after each 

other. It is the weight of edge Ei,j. 
 K – number of expected partitions. 
 Wx,y – the intra-set weight. x≠y, Wx,y= ΣFi,j where Vi ∈ Px and Vj ∈ Py. 

The goal is to model the problem as the following definition: 

Definition 1. The MIN k-CUT problem is to divide G into K disjoined partitions {P1, 
P2,…,Pk}. Such that ΣWi,j is minimized. 

4.3   The Mathematical Model 

Yet there was another constraint on our program. Gathering bytecode instructions for 
partitions regardless of total size of handlers is impractical, since the size of each 
bytecode handler is distinct, and the total code size of a partition cannot exceed the 
size of a NAND flash page. Our aim is to distribute bytecode handlers into several 
disjoined partitions {P1, P2,…,Pk}. We defined the following notations: 
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 Si – the code size of bytecode handler Vi. 
 N – the size of one NAND flash page. 
 M(Pk ) – the size of partition Pk. It is ΣSm for all Vm∈ Pk . 
 H(Pk ) – the value of partition Pk. It is ΣFi,j for all Vi , Vj ∈ Pk . 

Our goal was to construct partitions that satisfy the following constrains. 

Definition 2. The problem is to divide G into K disjoined partitions {P1, P2,…,Pk}. 
For each Pk that M(Pk) ≤ N. Such that Wi,j is minimized. And maximize ΣH(Pi ) for all 
Pi ∈ {P1, P2,…,Pk}. 

This rectified model is exactly an application of the graph partition problem, i.e., the 
size of each partition must satisfy the constraint (NAND flash page size), and the sum 
of intra-partition path weights is minimal. The graph partition problem is NP-
complete [13]. However, the purpose of this paper was neither to create a new graph 
partition algorithm nor to discuss difference between existing algorithms. The 
experimental implementation just adopted the following algorithm to demonstrate our 
approach works. Other implementations based on this approach may choose another 
graph partition algorithm that satisfies specific requirements. 

Partition (G) 
1. Find the edge with maximal weight Fi,j among graph G, while the Si + Sj ≤ N. 

If there is no such an edge, go to step 4. 
2. Call Merge (Vi, Vj ) to combine vertexes Vi and Vj. 
3. Remove both Vi and Vj from G. go to step 1. 
4. Find a pair of vertexes Vi and Vj in G such that Si + Sj ≤ N. If there isn’t a pair 

satisfied the criteria, go to step 7. 
5. Call Merge (Vi , Vj ) to combine vertexes Vi and Vj. 
6. Remove both Vi and Vj out of G. go to step 4. 
7. End. 

The procedure of merging both vertexes Vi and Vj is: 

Merge (Vi , Vj ) 
1. Add a new vertex Vk. to G. 
2. Pickup an edge E connects Vt with either Vi or Vj. If there is no such an edge, 

then go to step 6. 
3. If there is already an edge F connects Vt to Vk, 
4.  Then, add the weight of E to F, and discard E. 
5.  Else, replace one end of E which is either Vi or Vj with Vk. 
6. End. 

Finally, each vertex in G is an aggregation of several bytecode handlers. The 
refinement process is to collect bytecode handlers belong to the same vertex and place 
them into one NAND flash page. 

5   Refinement Process 

The implementation of the refinement process consisted of two steps. The refinement 
process acted as a post processor of the compiler. It parsed intermediate files 
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generated by the compiler, rearranged blocks, and wrote optimized assembly codes as 
a substitution. Our implementation is inevitably compiler-dependent and CPU-
dependent. Current implementation tightly integrated with gcc for ARM, but the 
approach is easy to apply to other platforms. Figure 9 illustrates the outline of the 
processing flow, entities, and relations between each entity. The following paragraphs 
explain the functions of each step. 

A. Collecting dynamic bytecode instruction trace. The first step was to collect 
statistics from real Java applications or benchmarks, because the following steps will 
need these data for partitioning bytecode handlers. The modified KVM dumped the 
bytecode instruction trace while running Java applications. A special program called 
TRACER analyzed the trace dump to find the relevance of all instruction pairs. 

 

Fig. 9. Entities in the refinement process 

B. Rearranging the KVM interpreter. This is the core step realized by a program 
called REFINER. It acted as a post processor of gcc. Its duty was to parse bytecode 
handlers expressed in the assembly code and re-assemble them into partitions. Each 
partition fit for one NAND flash page. The program consisted of several sub tasks 
described as follows. 

(i) Parsing layout information of original KVM. The very first thing was to 
compile the original KVM. REFINER parsed the intermediate files generated by gcc. 
According to structure of the interpreter expressed in assembly code introduced in 
§3.2, REFINER analyzed the jumping table in the LookupTable trunk to find out the 
address and size of each bytecode handler. 

(ii) Using the graph partition algorithm to group bytecode handlers into disjoined 
partitions. At this stage, REFINER constructed the ICFG with two key parameters: (1) 
the relevance statistics of bytecode instructions collected by TRACER; (2) the machine 
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code layout information collected in the step A. It used the approximate algorithm 
described in §4.3 to divide the undirected ICFG into disjoined partitions. 

(iii) Rewriting the assembly code. REFINER parsed and extracted assembly codes 
of all bytecode handlers. Then, it created a new assembly file and dumped all 
bytecode handlers partition by partition according to the result of (ii). 

(iv) Propagating symbol tables to each partition. As described in §3.2, there are 
several symbol tables distributed in the BytecodeDispatch trunk. For most RISC 
processors like ARM or MIPS, an instruction is unable to carry arbitrary constants as 
operands because of limited instruction word length. The solution is to gather used 
constants into a symbol table and place this table near the instructions that will access 
those constants. Hence, the compiler generates instructions with relative addressing 
operands to load constants from the nearby symbol tables. Take ARM for example, its 
ABI defined two instructions called LDR and ADR for loading a constant from a 
symbol table to a register [14]. The ABI restricts the maximal distance between a 
LDR/ADR instruction and the referred symbol table to 4K bytes. 

Besides, it would cause a cache miss if a machine instruction in page X loads a 
constant si from symbol table SY located in page Y. Our solution was to create a local 
symbol table Sx in page X and copy the value si to the new table. Therefore, the relative 
distance between si and the instruction never exceeds 4KB, and it is impossible to raise 
cache misses when the CPU tried to load si.  

(v) Dumping contents in partitions to NAND flash pages. The aim is to map 
bytecode handlers to NAND flash pages. It re-assembled bytecode handlers belong to 
the same partition into one NAND flash page. After that, REFINER refreshed the 
address and size information of all bytecode handlers. The updated information 
helped REFINER to add padding to each partition and enforce the starting address of 
each partition to align to the boundary of a NAND flash page. 

6   Experimental Result 

Figure 10 shows the block diagram of our experimental setup. To mimic real 
embedded applications, we have implanted J2ME KVM to uClinux for ARM7 in the 
experiment. One of the reasons to use this platform is that uClinux supports FLAT 
executable file format which is perfect for supporting XIP. We ran KVM/uClinux on 
a customized gdb. This customized gdb dumped memory access trace and 
performance statistics to files. The experimental setup assumed there was a 
specialized hardware unit acted as the NAND flash memory controller which loads 
program codes from NAND flash pages to the cache. It also assumed all flash access 
operations worked transparently without the help from the operating system. In other 
words, it is not necessary to modify the OS kernel for the experiment. This 
experiment used “Embedded Caffeine Mark 3.0” [12] as the benchmark. 
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Embedded 
Caffeine Mark J2ME API

K Virtual Machine (KVM) 1.1
uClinux Kernel

GDB 5.0/ARMulator
Windows/Cygwin

ARM7 / FLASH

ARM7 / ROM

Java / RAM

Intel X86

 

Fig. 10. Hierarchy of simulation environment 

There are only two kinds of NAND flash commodities in the market: 512-bytes 
and 2048-bytes per page. In this experiment, we setup the cache simulator to meet the 
following conditions: 

1. There were four NAND flash page size options: 512, 1024, 2048 and 4096. 
2. The page replacement policy was full associative, and it is a FIFO cache. 
3. The number of cache memory blocks varied from 2, 4… to 32. 

We tuned four versions of KVM using the optimization process described in §5; 
each version suited to one kind of page size. All the experimental measurements are 
compared with those from the original KVM. Table 1 is the highlight of experimental 
results and shows the degrees of improvement of the optimized versions as well. 

In the test case with 4KB/512-bytes per page, the cache miss rate of the tuned 
KVM dropped to less than 1%, but the cache miss rate of the original KVM is greater 
than 3% at the same condition. In the best case, the cache miss rate of the tuned KVM 
was 96% lower than the value from the original one. Besides, in the case with only 
two cache blocks (1KB/512-bytes per page), the improvement was about 50%. It 
means tuned KVMs outperformed on devices with limited cache blocks. 

0

0.2

0.4

0.6

0.8

1

1.2

1024 5120 9216 13312 17408 21504 25600 29696

Cache Memory Size

N
or

m
al

iz
ed

 P
ag

e 
Fa

ul
t 

Ra
te

512
1024
2048
4096

 

Fig. 11. The chart of normalized cache-miss rates. The x-axis is the total size of the cache 
memory ( number_of_blocks * block_size ). 

Title Version 
arm-elf-binutil 2.15 
arm-elf-gcc 3.4.3 
uClibc 0.9.18 
J2ME (KVM) CLDC 1.1 
elf2flt 20040326 
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Table 1. Experimental cache miss counts. Data of 21 to 32 blocks were omitted due to their 
miss rates are too low to read. 

512 Bytes/Blk Miss Count 1024 Bytes/Blk Miss Count 
# Blks Improve. Original Optimized # Blks Improve. Original Optimized 

2 48.94% 52106472 25275914 2 38.64% 29760972 17350643 
4 50.49% 34747976 16345163 4 69.46% 21197760 6150007 
6 71.19% 26488191 7249424 6 78.15% 13547700 2812730 
8 80.42% 17709770 3294736 8 88.11% 8969062 1013010 
10 78.02% 12263183 2560674 10 96.72% 6354864 197996 
12 89.61% 9993229 986256 12 96.02% 3924402 148376 
14 95.19% 6151760 280894 14 92.97% 1735690 115991 
16 95.63% 4934205 204975 16 90.64% 1169657 104048 
18 94.37% 3300462 176634 18 75.11% 380285 89934 
20 90.48% 1734177 156914 20 58.30% 122884 48679 

Total Access 548980637 521571173 Total Access 548980637 521571046 
         

2048 Bytes/Blk Miss Count 4096 Bytes/Blk Miss Count 
# Blks Improve. Original Optimized # Blks Improve. Original Optimized 

2 40.74% 25616314 14421794 2 62.32% 14480682 5183539 
4 78.17% 14733164 3055373 4 86.32% 7529472 978537 
6 80.10% 8284595 1566059 6 93.27% 2893864 185037 
8 93.80% 4771986 281109 8 74.91% 359828 85762 
10 95.66% 2297323 94619 10 33.39% 88641 56096 
12 81.33% 458815 81395 12 -89.68% 25067 45173 
14 54.22% 96955 42166 14 0.08% 16547 15708 
16 52.03% 62322 28403 16 -33.81% 7979 10144 
18 24.00% 26778 19336 18 -17.08% 5484 6100 
20 10.08% 18390 15710 20 -24.69% 3536 4189 

Total Access 548980637 521570848 Total Access 548980637 521570757 

Figure 11 is the chart of the normalized miss rates (i.e., optimized_miss_rate / 
original_miss_rate.) The envelope lines of these charts are similar to concave curves. 
The cache miss rate of the tuned KVM declined faster than the rates of the original 
version in the cases that the amounts of cache blocks were small, and the curve goes 
downward. Once there were enough cache blocks to hold the working set of the 
original KVM, the tuned version gradually loss its competence. Thus, the curve turns 
upward. 

7   Conclusion 

Our refinement process analyzes not only the CFG of the interpreter but also the 
patterns of bytecode instruction streams, since we observed the input sequence drives 
the program flow. From this point of view, we concluded it is a kind of graph 
partition problem. Therefore, our technique utilized the theory to tune KVM for 
specific NAND flash page sizes. The experimental result proves that the refined KVM 
generates much lower cache misses than the unmodified version. 

The most important of all, it performed well with limited cache memory blocks. 
Consider the case of 8KB/512-bytes per page, the cache miss rate of the tuned KVM 
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is 0.6%. As compare with 3.2% from the original KVM, this is a significant 
improvement. Yes, if the cache is big, miss rate will not be an issue. However, our 
approach can ensure that the KVM generates lower misses at marginal conditions. 
This technique also enables SOC to integrate a small block of embedded SRAM as 
cache and still execute the KVM fast. 

Virtual machine is a special kind of software. Their common practice is to have an 
interpreter with a wide span of instruction handlers. Therefore, the execution flow is 
determined by applications running on top of virtual machines. As a result, our tuning 
process should apply to other interpreters or virtual machines besides KVM. 
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Abstract. Aggressive function inlining can lead to significant improve-
ments in execution time. This potential is reduced by extensive instruc-
tion cache (Icache) misses caused by subsequent code expansion. It is
very difficult to predict which inlinings cause Icache conflicts, as the ex-
act location of code in the executable depends on completing the inlining
first. In this work we propose a new method for selective inlining called
“Icache Loop Blockings” (ILB). In ILB we only allow inlinings that do
not create multiple inlined copies of the same function in hot execution
cycles. This prevents any increase in the Icache footprint. This method
is significantly more aggressive than previous ones, experiments show it
is also better.

Results on a server level processor and on an embedded CPU, running
SPEC CINT2000, show an improvement of 10% in the execution time
of the ILB scheme in comparison to other inlining methods. This was
achieved without bloating the size of the hot code executed at any single
point of execution, which is crucial for the embedded processor domain.

We have also considered the synergy between code reordering and
inlining focusing on how inlining can help code reordering. This aspect
of inlining has not been studied in previous works.

1 Introduction

Function inlining [1] is a known optimization where the compiler or post link
tool replaces a call to a function by its body, directly substituting the values
passed as parameters. Function inlining can improve instruction scheduling as it
increases the size of basic blocks. Other optimizations such as global scheduling,
dead code elimination, constant propagation, and register allocation may also
benefit from function inlining. In order to optimize the code that was generated
by the inlining operation, inlining must be executed before most of the backend
optimizations.

There is a special relation between inlining and embedded systems. Embedded
CPUs have relatively small branch history tables compared to servers. Aggressive
inlining can improve the branch prediction in embedded systems, compensating
for their relatively small number of entries. The reason is that return instruc-
tions are implemented with branch-via-register instructions which are typically
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responsible for most of the branch mis-predictions. Inlining eliminates many
return instructions thus “freeing” significant amount of entries in the branch
history tables.1 Finally, eliminating the code of the function’s prologue and epi-
logue may further reduce execution time.

In spite of these potentials, inlining is not used aggressively and is usually
applied to restricted cases. The reason is that aggressive function inlining can
cause code bloat and consequently instruction cache (Icache) conflicts; thus,
degrading performance. In particular, different copies of the same function may
compete for space in the Icache. If a function is frequently called from different
call sites, duplicating it can cause more cache misses due to frequent references
to these multiple copies or to code segments that are activated through them.

The main problem with inlining is that the final instructions’ locations (ad-
dresses in the final executable) are determined only after inlining is completed.
Consequently, it is not possible to determine which inlinings will eventually lead
to Icache conflicts. Many optimizations that modify the code and change its lo-
cation are applied after inlining (such as scheduling and constant propagation).
An important optimization that dramatically alters code locations and is ap-
plied after inlining is code reordering [7]. Code reordering groups sequences of
hot basic blocks (frequently executed) in ordered “chains” that are mapped to
consecutive addresses in the Icache. Thus, code reordering can reduce or repair
part of the damage caused by aggressive inlining decisions. However, it does not
eliminate the need to carefully select the inlined function calls.

Even sophisticated versions [2] of code reordering that use cache coloring
techniques can not repair the damage caused by excessive inlining. This inher-
ent circular dependency leads compiler architects to use heuristics for function
inlining. Current inlining methods use a combination of these basic methods and
they differ only in the criterion/threshold of when to use a given basic method:

– inline only very small functions, basically preserving the original code size.
– inline a function if it only has a single caller. Thus, preserving or even reduc-

ing the original code size. This is extended to inlining only dominant calls,
i.e., call sites that account for the majority of calls for a given function.

– inline only hot calls, not necessary the dominant ones.
– inline if a consecutive chain of basic blocks does not exceed the size of the

L1 Icache.
– inline calls with constant parameters whose substitution followed by constant

propagation and dead code elimination will improve performance. This cri-
terion was proposed and used in [5] for the related optimization of function
cloning, i.e., create a specialized clone of a function for a specific call site2.

We have experimented with these rules in IBM’s FDPR-Pro tool which is a post
link optimizer [7] and discovered that they are too restrictive and can prevent
many possible inlinings that could lead to significant code improvement.
1 This is important in processors with deep pipelines or minor branch prediction sup-

port. The latter attribute is prevalent in leading high-end embedded processors.
2 Cloning is less efficient than inlining since it does not increase the size of consecutive

chains of hot basic blocks.
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An “execution cycle” is a cycle in the joined call graph and control flow graph
of all functions in a program. This graph contains explicit edges for all call
and return instructions (forming an inter-procedural control flow graph). These
cycles usually correspond to loops. ILB prevents any inlining that will create two
or more copies of the same function in the same hot cycle/loop of this extended
control flow graph. One reason for this criterion is that the Icache footprint
of hot loops after ILB inlining does not increase (since each cycle can contain
at most one inlined copy of the same function). Moreover, multiple copies of
the same function can have a cascading effect, as follows: Let f0, . . . .fk be a
set of functions where each fi (i < k) has a hot loop with two hot calls to
fi+1. Aggressive inlining will lead to 2k−1 copies of fk in the Icache footprint
of f0. Since all of these 2k−1 inlinings belong to a hot execution cycle, repeated
Icache misses are likely to occur. The proposed criterion is called “Icache Loop
Blockings” (ILB) referring to repeated Icache misses caused by loops as “Icache
Blockings”.

Figure 1 illustrates how ILB is applied to two cases of hot loops. The two-
sided arrows in the figure represent call/return-edges, other arrows represent the
control flow edges. For simplicity, a call to a function can appear as a single node
in a loop or pointed by a two-sided arrow (e.g., f1() ←→ g()). The loop shown in
the left side has two distinct calls f1(), f2() that can be safely inlined. However,
the inlining of g() in the inlined calls f1(), f2() is not allowed since it will lead
to two copies of g() in the same hot execution cycle. Next, consider the two
consecutive loops shown on the right side of figure 1. The calls to f1(), f2() and
g() in the two loops can be safely inlined since each call belongs to a different
execution cycle.

More complex examples of using the ILB method are illustrated in figure 2
that includes cases of “pseudo cycles”. An execution cycle in the extended CFG
is called a “pseudo cycle” if it returns from a different call node than the one
it entered. Each loop of the left example of figure 2 contains two single calls to
g and q (through f1(), f2() respectively) forming hot cycles containing multiple

f1

g

f1 f2

g

m2(){m1(){
for(i=0;i<n;i++){
f1();.....f2();...}

f1(){ ...g();....}
f2(){....g();....}

for(i=0;i<n;i++){...f1();...}
for(i=0;i<n;i++){...f2();...}

}
f1(){ ...g();....}
f2(){....g();....}

g

f2

Fig. 1. Loop blocking (left) and pseudo loop Blocking (right)
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f2(){....q();....}
f1(){ ...g();....}

m1(){
for(i=0;i<n;i++){
f1();.....f2();...}

for(i=0;i<n;i++){
f1();.....f2();...}

m2(){

f1 f2 f1 f2

qg

}

for(j=0;j<n;j++){

for(i=0;i<n;i++){...f2();...}
for(i=0;i<n;i++){...f1();...}

}

m3(){

for(i=0;i<n;i++){
m4(){

f3();.....f4();...}

f1(){ ...h1();....}
f2(){....h2();....}
f3(){ ...h1();....}
f4(){....h2();....}
h1(){ ...g();....}
h2(){....q();....}

f1 f2 f3 f4

h2h1

g

Fig. 2. Complex cases addressed by the ILB method

copies of g() and q(). However, all these cycles are pseudo-cycles and hence full
inlining is allowed by the ILB. Thus, care must be given to the detection of these
pseudo-cycles. The right side of figure 2 is a combination of the two previous
examples. The inlining of g in the right side of figure 2 is allowed only in the
copies of h1 and h2, that have been inlined into f1 and f2 respectively, and not
allowed inside f3 or f4. The maximal sequence of inlinings allowed by ILB in
this example is therefore f1 ⇐= h1 ⇐= g, f2 ⇐= h2 ⇐= g , f3 ⇐= h1, and
f4 ⇐= h2. Hence the algorithm for implementing ILB must be able to compute
the right order in which the inlinings are made.

Next, the ILB optimization is followed by a code reordering pass creating a
synergy between inlining and code reordering as follows:

– Code reordering rearranges basic blocks in consecutive hot chains, removing
part of the Icache conflicts caused by aggressive inlining.

– Function inlining creates better opportunities for code reordering by extend-
ing its scope across function calls.

We include a separate discussion of this synergy and show in detail how code
reordering can benefit from the aggressive inlining.

The proposed scheme relies on profile information to build and analyze the
call graph and the joined/extended control flow graph of the program. Based on
this profile information we consider functions and/or basic blocks as being ’hot’
(frequently called) or ’cold’ (infrequently called).

We conclude with some data on embedded CPUs supporting our claim regard-
ing the special relation between inlining and embedded systems. Table 1 lists the
leading high-end embedded processors and the number of entries in their branch
direction (Branch History Table) and branch target predictors (Branch Target
Buffer), and the number of entries in their return stacks. Many have little or
no support for branch target predictions, in particular for return address pre-
dictions. This is opposed to high-end servers, such as the IBM Power4, which
has a complex, two-tiered, direction predictor, a 32-entry function call cache,
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Table 1. Dynamic branch predictors on leading high-end embedded processors

Processor BHT BTB Return Stack L1 I-cache
AMCC 440GX 1024 16 – 32KB, 32B, 64 ways
Broadcom BCM1250 1024 64 16 32KB, 32B, 4 ways
Cavium Octeon 256 – 4 32KB, 32B, 4 ways
IBM 750GX 512 64 – 32KB, 32B, 8 ways
FreeScale MPC7447A 2048 2 – 32KB, 32B, 8 ways
FreeScale MPC8560 512 512 – 32KB, 32B, 8 ways
PMC-Sierra RM9000x2GL 256 – 4 32KB, 32B, 4 ways

and 16-entry return address cache. On the other hand their L1 I-caches are in
par with the aforementioned class of processors. The numbers demonstrate the
importance of aggressive inlining techniques for embedded systems.

2 ILB Based Aggressive Function Inlining

Inlining decisions are based on the Call Graph (CG) of the program. Each edge
of the graph is assigned a weight: the frequency of each function call according to
the profile information collected. The Average Heat ratio (AvgHeat) is the sum
of all the frequencies of all the executed (dynamic) instructions (DI) gathered
during the profiling stage, divided by the total number of static instructions (SI)
in the program:

AvgHeat =
∑DI

i freqi

SI
Cold edges are defined as any edge in the extended CFG whose weight is lower
than some threshold (e.g., 10%) of AvgHeat. The algorithm implementing the
ILB method is:

1. Based on edge profile information, create the call graph CG for the given
program and attach a weight to each edge. The weight is its execution fre-
quency.

2. Traverse CG and remove all cold edges. Section 2.2 elaborates on this.
3. Remove cyclic paths from CG by finding the smallest weighted set of edges

in CG using the algorithm of Eades et. al. [6] for solving the feedback edge
set problem. Section 3 elaborates on this.

4. Let EG be the extended control flow graph containing the control flow graph
of each function and direct edges for call and return instructions. For each
function f in the call graph CG, which is a candidate for inlining:
(a) For every two incoming edges e1 and e2 to f in CG, let caller1 be the

caller basic block ending with e1 and let caller2 be the caller basic block
ending with e2 in EG. fallthru1 and fallthru2 are the basic blocks
following caller1 and caller2 in EG respectively.

(b) Traverse EG and search for directed paths from fallthru1 to caller2
and from fallthru2 to caller1.

(c) If both paths exist, remove the e1 and e2 edges from CG.
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5. Sort CG in topological order.
6. Traverse the sorted graph from the root in descending order. For each func-

tion f :
(a) Duplicate the code of function f for each of the call sites that have an

outgoing edge to f . All relevant information related to the copies of f
(f1, f2,...), such as symbolic information, branch tables, traceback data,
etc., are duplicated as well.

(b) Update the selected call sites to f , to call its copies.
(c) Update the weights of the edges in both the call graph and the control

flow graphs of both f and its copies, to reflect the changes resulting from
duplicating f . For example if a function f is called 100 times from g and
200 times from h then the weights of the edges in each copy of f should
be divided by this ratio as well.

7. Traverse all the functions in CG starting from the leaf functions in ascending
order. For each function fi:
Embed fi into its calling function g while eliminating the save, restore, call,
and return instructions.

8. Update CG and EG to reflect the changes resulting from inlining f .

2.1 ILB Experimental Results

We implemented the various inlining algorithms into IBM FDPR-Pro - a post-
link optimization tool. Measurements were obtained on the SPEC CINT2000
benchmark running on platforms based on the following processors:

1. IBM Power4 that has a 64KB, direct mapped, L1 Instruction Cache with
128-byte lines.

2. AMCC 440GX that has a 32KB, 64-way associative, L1 Instruction Cache
with 32-byte lines.

In both measurements, FDPR-Pro was also used to collect the profiling data by
instrumenting the benchmarks and running them on the train workload. Per-
formance measurements were collected using the reference input. The following
graphs compare ILB versus four inlining methods:

all - all executed functions that were somewhat hot.
hot - all functions that are above the average heat.
dominant - call sites that make more than 80% of the executed calls to the

function.
small - only small size functions.

This was also repeated for the embedded CPU. The results in Figure 3 show
that ILB improves the execution time by 10% compared to the other four meth-
ods. Note that the ILB almost never degraded the performance compared to
the “base” case, while there are cases where small, hot and all reduced the per-
formance. Note that dominant calls are a subset of ILB since a hot call that is
repeated in a hot cycle can not be dominant. This indicates that ILB is safer than
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Fig. 3. Performance improvements on the Power4 (top) and 440GX (bottom)

inlining methods that are based on combinations of size and temperature. The
improvements on the embedded CPU are smaller than those on the server. This
can be explained by the fact that the Icache on the AMCC 440GX is highly as-
sociative. Therefore, conflicting inlinings on the Power4’s direct-mapped Icache
do not conflict on the 440GX’s associative Icache.

Figure 4 depicts the number of function inlined by each method. Note that
ILB inlined less functions than most of the other methods yet obtained a higher
performance. This suggests that the ILB scheme inlines the “correct” set of
functions. Moreover, there is a clear correlation between inlining to many func-
tions and performance degradation, demonstrating the need for “precise” inlining
methods.

2.2 Removing Cold Edges

Here we describe in detail how “cold” edges are removed from the call graph,
and are not considered for inlining. The algorithm is based on a threshold that
indicates which edges are considered cold. The experimental results verify that
each program requires a different threshold in order to maximize the performance
of aggressive inlining. This requires a normalization procedure of the profile
information as follows:
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Fig. 4. Number of functions inlined per method

AvgHeat the average edge weight in the control flow graph of the entire pro-
gram (defined above).

MaxHeat the maximal weight in the graph.
HT an input Heat Threshold percentage between 0 and 1.
NormHT the Normalized Heat Threshold calculated by the following formula:

NormHT =

⎧
⎨

⎩

0 if HT = 0
MaxHeat + 1 if HT = 1
min(AvgHeat/ ln(1/HT 2), MaxHeat + 1) if 0 < HT < 1

The computed NormHT formula is based on the distribution of the ex-
ecution of the edges in the control flow graph. For heat (frequency) values
below AvgHeat, NormHT ascends very slowly. until it reaches the AvgHeat
threshold (at around HT = 60%), when it suddenly ascends very quickly un-
til reaching the MaxHeat value where it remains constant. Figure 5 displays
the function’s behavior.

0

AvgHeat

MaxHeat

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

He
at

HT

Norm
AvgH

Fig. 5. Behavior of NormHT as a function of HT

Every edge of the control flow graph that falls below NormHT is removed
from the graph. As a result, the higher the HT , the more aggressive the opti-
mization. For HT = 0, all the edges in the call graph are removed completely,
thus disabling the optimization. For HT = 1, the call graph is left unchanged,
enabling the optimization for every non-cold edge that was left after applying
Step 2 of the main algorithm.
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3 Cyclic Paths

Given the call graph of the program, the proposed algorithm must handle recur-
sive function calls that are reflected by cyclic paths in the call graph. To handle
cyclic paths, the algorithm must remove one of the edges in the cycle.

Different inlining orders are created for different edges being removed from the
graph, as can be seen from Figure 6. The figure shows an example of a cycle in
the call graph of a given program, in which function f includes a call to function
i that in turn calls j, which calls back to f . Different possible inlining chains are
created by removing different edges (lower part of Figure 6). They are drawn
according to the following rules:

1. If a function foo contains an embedded calling site to an inlined function
bar, then bar is drawn beneath foo and slightly aligned to the right.

2. If bar is drawn directly beneath function foo, without being aligned to
the right, then both foo and bar are inlined into some other function gal
containing the two calling sites to foo and bar.

Figure 6 shows all possible inlining chains created by removing different edges in
the f – i – j cycle. For example, removing the j – f edge, causes function j to be
inlined into i, which in turn is inlined into f (as shown in Figure 6a). Therefore,
it is important to search for the maximal directed acyclic graph representation
of the given call graph. This problem is a variation of the feedback edge set
problem [6] . The problem is NP-hard and the time complexity of the algorithm
is exponential in respect to the number of edges in the largest strongly connected
component of G. However, in practice, the number of recursive functions that
participate in the creation of cycles in a call graph is usually very small. Thus,
the time complexity is manageable.

f
i

j
g

h

(a) Re-
moving
the j-f
edge

j
f
i
g

h

(b) Re-
moving
the i-j
edge

i
j
f
g

h

(c) Re-
moving
the f-i
edge

Fig. 6. Different inlining options for cycles in the call graph

4 The Synergy of Function Inlining and Global Code
Reordering

One of the fundamental issues related to function inlining is the insertion of ‘cold’
(rarely executed) code next to ‘hot’ (frequently executed) code. This instruction
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foo:(80 times)
BB1: Call bar
BB2: CMP R3,0

JEQ BB4
BB3: ADD R3,12
BB4: RET

bar:(90 times)
BB5: CMP R6,R7

JEQ BB7
BB6: ADD R6,9
BB7: RET

(a) Before code re-
ordering

foo:(80 times)
BB1: Call bar

JMP BB2 (penalty)
bar:
BB5: CMP R6,R7

JNE BB6
BB7: RET
BB2: CMP R3,0

JNE BB3
BB4: RET

BB6: ADD R6,9
JMP BB7

BB3: ADD R3,12
JMP BB4

(b) After code reordering
(i)

foo:(80 times)
BB1: Call bar
BB2: CMP R3,0

JNE BB3
BB4: RET
bar:
BB5: CMP R6,R7

JNE BB6
BB7: RET

BB6: ADD R6,9
JMP BB7

BB3: ADD R3,12
JMP BB4

(c) After code re-
ordering (ii)

foo:(80 times)
BB5: CMP R6,R7

JNE BB6
BB2: CMP R3,0

JNE BB3
BB4: RET

BB6: ADD R6,9
JMP BB4

BB3: ADD R3,12
JMP BB4

bar:(10 times)
BB5: CMP R6,R7

JEQ BB7
BB6: ADD R6,9
BB7: RET

(d) After reorder-
ing and inlining

Fig. 7. Code reordering followed by function inlining

grouping increases the Icache miss rate by spreading the hot code over more
cache lines. In addition it increases the amount of “mixed” Icache lines contain-
ing both hot and cold instructions. Thus, after inlining we apply code reordering
to rearrange the code layout by grouping hot consecutive basic blocks into con-
secutive chains. Code reordering is the last phase of the optimization process and
as such it can determine the final location of instructions. Hence, code reordering
can rearrange code segments such that Icache misses are reduced.

Most previous works also used code reordering after inlining as will be ex-
plained in section 5, hence this aspect of code reordering is well known. In this
section we focus on a different aspect of code reordering and inlining which is
the way inlining can help improve code reordering’s ability to group larger and
more efficient code segments.

The code reordering algorithm for generating optimized sequences of basic
blocks is based on the tracing scheme [11]. The algorithm starts with an entry
point and grows a trace of basic blocks, based on profile information. A trace is
a sequence of basic blocks that are executed serially. When the control flow to
the next block in a trace reaches an indirect branch instruction (which usually
indicates a function return) or falls below a certain frequency threshold, the
algorithm stops growing a trace and starts a new one.

The example in Figure 7 exemplifies this scenario (hot basic blocks are
boldfaced). Figure 7a shows the hot path within function foo that includes
a hot call to function bar. There are two options to build the traces during code
reordering:
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1. Ideally, the best reordering trace starts with the hot basic block BB1 in foo,
followed by the hot basic blocks BB5 and BB7 in bar itself, and finally the
hot basic blocks BB2 and BB4 that follow the call instruction to bar in foo.
This trace reordering is given in Figure 7b. Unfortunately, although this is
the ideal reordering trace, there is an extra jump instruction to BB2 that we
are forced to add immediately after the call instruction to bar. The extra
jump instruction is necessary to maintain the original program correctness,
so that the return instruction in bar will continue to BB2.

2. In order to avoid the extra jump instruction, it is possible to form two
reordering traces. A trace consisting of the hot basic blocks in foo: BB1,BB2,
and BB4, is followed by a second trace consisting of the hot basic blocks in
bar: BB5 and BB7. The resulting code for this selection of reordering traces
is shown in Figure 7c. Although this selection does not generate extra jumps
for maintaining correctness, it does not reflect the true control flow of the
program, as it avoids creating traces that can cross function boundaries.

Figure 7 shows that after inlining bar at the call site in foo, the code reorder-
ing creates the optimal hot path without the extra jump or return instructions,
and by following the true control flow. Furthermore, function inlining increases
the average size of each reordering trace. In Figure 7, the reordering trace size
after function inlining includes six instructions, which is longer than each of the
reordering traces BB1,BB2,BB3 or BB5,BB7, shown in Figure 7c.

The longer the traces produced by code reordering, the better the program
locality. We assert that the average size of traces created before aggressive inlin-
ing vs. the average size after inlining can serve as a measure for the improvement
to the reverse effect where inline helps code reordering. In general, the average
size of traces increases due to function inlining: traces that started to grow in a
certain function can now grow into the corresponding inlined callee functions.

4.1 Synergy Experimental Results

The following experimental results demonstrate this “reverse effect” and synergy
between function inlining and code reordering on the Power4. The Power4 has
an extensive set of Performance Counters (PMCs), that enable us to isolate
the reasons for a program’s behavior. These count the L1 Icache fetches and
branch target mispredictions. Figure 8 shows the improvements of reduced L1
Icache fetches (percentage) comparing code reordering and the combination of
inlining and code reordering (denoted as “aggressive inlining”). The average
improvement due to inlining is from 16% to 24%. More significant results are
presented in Figure 9, which shows the percentage of reduced branch target
mispredictions. The code ordering scheme adds extra branches, which cause extra
target mispredictions. Applying the aggressive inlining scheme removes many
of these branches and reduces the number of target mispredictions for most
applications. The direction mispredictions are reduced as well, albeit at a lower
rate (3%) than the target mispredictions.

We have also tested the synergy between code reordering and inlining on the
PowerPC 405 processor used for embedded systems. The PowerPC 405 is the core
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Fig. 8. Amount of L1 Icache fetches reduced on CINT2000 (lower is better)
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Fig. 9. Amount of branch target mispredictions reduced on CINT2000 (lower is better)

of the IBM PCIX Cryptographic Coprocessor. We tested the csulcca (Common
Support Utility Linux Common Cryptographic Architecture) application and
obtained 2% improvements over code reordering due to the use of inlining.

5 Related Work

Methods for selective inlining have been studied and implemented in the last
10 years. These works should be separated from the works in code reordering
wherein inlining is only a pre-stage to code reordering. The goal of code reorder-
ing is to rearrange code segments to minimize Icache misses. As explained in
Section 1 this differs from the the goal of selecting “safe” yet aggressive inlin-
ings.

Scheifler [12] proposed to inline functions based on: a) function size, b) num-
ber of calls versus function size and c) dominant calls. Scheifler showed that
computing optimal inlining is at least NP hard. Ball [4] proposed to inline func-
tions based on their utility for constant propagation and other optimizations.
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McFarling [9] describes a statistical method to predict which calls should be
inlined. The method is based on the distribution of relative “hotness” of calls
versus their size. This method refines the method of inlining “hot” functions.
The method proposed here differs in several aspects:

– it does not depend on a cache model nor does it depend on the size of the
inlined functions.

– it considers the structure of the input program (preventing duplication in
hot cycles). whereas [9] scheme is based on statistical predictions.

[8] considers the issue of selecting among different “inlined versions” of a
given function. Different versions of a function f() are created during the inline
processes as a result of different inline decisions of functions called from f().
For example, for f(){ ...; g(); h(); ...} there are four immediate versions: the
original f(){...}, f(){ ...; inlined g(); h(); ...}, f(){ ...; g(); inlined h(); ...}
and f(){ ...; inlined g(); inlined h(); ...}. Three methods are compared: cv- use
maximally inlined version, ov- original version of the callee and current version
of the caller and av- use any version. There is a correspondence between these
methods and actual inlining systems such as the one used in GCC or in [12].
A probabilistic model to estimate the benefit of inlining given call sequences is
devised. This model is based entirely on calling frequencies. Based on this model
and experimental results the authors show that the ov- method is at least as
powerful as the other two options. The method proposed here is orthogonal to
the classification used in [8] as it is based on the structural properties of the
call-graph and thus, any combination such as av-ILB, ov-ILP and cv-ILB can be
devised.

Ayers et al. [3] and Das [5] found an analogy between the code expansion
problem and the Knapsack problem. They used this analogy to help identify
appropriate candidates for function inlining. Arnold et al. [1] tried to find the best
candidates that fit a given code size budget for the Jalapeño dynamic optimizing
compiler. Way et al. [15] suggest different inlining method that are based on the
idea of region-based analysis. The use of regions is designed to enable the compiler
to operate on reduced control flow graphs of inlined functions before applying
the register allocation and scheduling algorithms. The formation of a region is
guided by profiling information and is similar to the way the code reordering
algorithm determines the new order of the basic blocks. Their heuristics reduce
compilation complexity but are bound by code size limitations. For function
inlining optimization, Way et al. [14] describe a new profile-based method for
determining which functions to inline to avoid cases of code bloat, by collecting
path profiling information on the call graph of the program. Another work in
this direction is [16] introducing two heuristics for the ORC compiler called
“adaptation” and “cycle density”. Both methods are based on temperature and
size, e.g, cycle density prevent inlining of hot functions whose calling frequency
is low.

The post-link tools PLTO [13] and Alto [10] address the issue of code inlining
as part of their post-link optimizations. PLTO uses a cache model for determining
which functions to inline (similar to McFarling’s [9]). We have also chosen to
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implement our techniques at post-link level using the FDPR tool [7]. However,
in our work, we eliminate the restriction on the increase of code size by selecting
only hot functions as candidates and by not duplicating them to call sites for
which they are likely to cause cache conflicts.
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